
Get out of my cloud: interacción con OpenStack y uso 
de contenedores con Docker

Seminario de Informática Mirian Andrés
26/05/2016

Jesús María Aransay Azofra 
Universidad de La Rioja 
Departamento de Matemáticas y Computación

This work is licensed under a                                                                                   
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.



Index

1.1. OpenStack: introduction

1.2. OpenStack: different forms of interaction

1.3. OpenStack: deploying a microservices infrastructure

1.4. Deploying containers in the cloud: Docker



1.1. OpenStack: introduction

OpenStack: IaaS (Infrastructure as a service)

OpenStack is a cloud operating system that controls large pools of compute, storage, and 
networking resources throughout a datacenter 



1.1. OpenStack: introduction

OpenStack 

Getting Started (Nebula = NASA  + RackSpace): 
http://docs.openstack.org/icehouse/training-guides/content/operator-getting-started.html

Open Source: http://www.openstack.org/community/ (API REST internally implemented in 
Python)

Supported by several enterprises (IBM, HP...): 
http://www.openstack.org/foundation/companies/



1.2. OpenStack: ways of interaction

OpenStack: Interacting with OpenStack

At least, four different ways of interaction with OpenStack are available:

1. Dashboard; https://iaas.ceta-ciemat.es/dashboard/



1.2. OpenStack: ways of interaction

OpenStack: Interacting with OpenStack

At least, four different ways of interaction with OpenStack are available:

2. CLI; shell, bash...; http://docs.openstack.org/cli-reference/



1.2. OpenStack: ways of interaction

OpenStack: Interacting with OpenStack

At least, four different ways of interaction with OpenStack are available:

3. SDKs for Python, Ruby, Java, Node.js...; http://developer.openstack.org/



1.2. OpenStack: ways of interaction

OpenStack: Interacting with OpenStack

At least, four different ways of interaction with OpenStack are available:

4. libcloud Apache: https://libcloud.apache.org/



1.2. OpenStack: ways of interaction

OpenStack: Interacting with OpenStack

At least, four different ways of interaction with OpenStack are available:

1. Dashboard; https://iaas.ceta-ciemat.es/dashboard/

2. CLI; shell, bash...; http://docs.openstack.org/cli-reference/

3. SDKs for Python, Ruby, Java, Node.js...; http://developer.openstack.org/

4. libcloud Apache: https://libcloud.apache.org/



1.2. OpenStack: ways of interaction

Basically, all these forms of interaction are based on a REST API

https://wiki.openstack.org/wiki/OpenStackRESTAPI
 (compatible with Rackspace API: http://api.rackspace.com/)

http://developer.openstack.org/api-ref.html (see some url examples in 
http://developer.openstack.org/api-ref-compute-v2.1.html)



1.3. OpenStack: deploying a microservices infrastructure

faafo: First App Application for OpenStack

Julia Sets: https://github.com/openstack/faafo/blob/master/faafo/worker/service.py
https://github.com/openstack/faafo/blob/master/doc/source/references.rst



1.3. OpenStack: deploying a microservices infrastructure

OpenStack: Application infrastructure

http://developer.openstack.org/firstapp-libcloud/



1.3. OpenStack: deploying a microservices infrastructure

https://github.com/ope
nstack/faafo/blob/mast
er/contrib/install.sh

https://git.openstack.or
g/cgit/openstack/faafo/
commit/



1.3. OpenStack: deploying a microservices infrastructure

l Instalation script for every microservice
l https://github.com/openstack/faafo/blob/master/contrib/install.sh

l Python source code of the example
l https://git.openstack.org/cgit/openstack/faafo/commit/

l Python script of the whole infrastructure deployment (by @CarlosTiradoG)
l https://gist.github.com/catirado/ecad1c28275fb87033a7



1.3. OpenStack: deploying a microservices infrastructure

A more familiar application architecture, including also load balancing



1.4. Deploying containers in the cloud: Docker



1.4. Deploying containers in the cloud: Docker

- in the previous example, every microservice was using a single Virtual Machine

- virtualisation environments impose an overhead in the host system, in terms of 
resources and costs

- containers are operating-system-level virtualisation environments



1.4. Deploying containers in the cloud: Docker

- Differences among containers and virtual machines

- Containers are executed in virtual partitions using the OS calls

- Containers use the same OS (at least the same kernel) as the host machine

- Containers are more lightweight and easier to distribute, and therefore also to 
package applications

- They are specially suited to run multiple isolated applications on a single (virtual) 
machine



1.4. Deploying containers in the cloud: Docker

- A container is a group of processes running on an operating system that are isolated 
from other such groups of processes

- There are several levels of isolation involved in containers

- Solaris containers, called Zones, can be allocated network interfaces and network 
bandwidth regulated

- A container can interact (or kill) exclusively processes in its container

- On the other hand, the host machine can see and manage every process in every 
container



1.4. Deploying containers in the cloud: Docker



1.4. Deploying containers in the cloud: Docker

Description of Docker. At the software level:

- docker is a single program

- Docker is a client/server architecture (Unix sockets or TCP ports, or both) 

- the Docker daemon (docker -d) can run on any number of servers

- a single client (docker run) can address any number of servers 

- an additional piece of software, the registry, stores Docker images and 
metadata about those images



1.4. Deploying containers in the cloud: Docker



1.4. Deploying containers in the cloud: Docker

Description of Docker. At the network level:

- each container behaves as a host on a private network

- a Docker server behaves as a virtual bridge

- containers are clients behind the virtual bridge

- each container has an own IP address, allocated to the virtual interface

- ports of the host can be bind to containers ports'



1.4. Deploying containers in the cloud: Docker



1.4. Deploying containers in the cloud: Docker

- Some case uses (or workflows...) where Containers are worth a try (1 / 3)

- PaaS (Platform as a Service); because of their ease of configuration and 
maintenance, and their low resource consumption, they shape an ideal solution for 
Platform as a Service providers 

https://www.quora.com/What-is-the-relationship-between-PaaS-and-containers-like-Docker



1.4. Deploying containers in the cloud: Docker

- Some case uses (or workflows...) where Containers are worth a try (2 / 3)

- Testing and developing environments. Similar to Virtual Machines, but with 
lower resource demand and consumption, containers are well suited for testing and 
developing environments



1.4. Deploying containers in the cloud: Docker

- Some case uses (or workflows...) where Containers are worth a try (3 / 3)

- Creating ephemeral machines; for instance, it is trivial to create and provision a 
container for a “one-use purpose”, such as building an application for Jenkins in 
an “ad-hoc” machine, and destroy it afterwards; 

http://www.stackengine.com/implications-of-docker-ephemeral-compute/

Instead of “daemons”, several tasks could be performed through containers



1.4. Deploying containers in the cloud: Docker

- LXC (2008, GNU GPL): https://linuxcontainers.org/

- Solaris containers (2004, Proprietary): http://www.oracle.com/technetwork/server-
storage/solaris/containers-169727.html
  

- Virtuozzo (2000, Proprietary): http://www.virtuozzo.com/

- Docker (2013, Apache License 2.0): https://www.docker.com/

Comparison: https://www.flockport.com/lxc-vs-docker/

 



1.4. Deploying containers in the cloud: Docker

- Docker was first introduced in the Python Developers Conference (March, 2013); 
Solomon Hykes

- The project was open-sourced and made available on GitHub: 
https://github.com/docker/docker

- Docker promises:

- Encapsulate the process of creating a distributable artifact for any application

- Deploying applications at scale into any environment

- Streamlining the workflow of agile software organizations

- Easing the DevOps communication and transference processes



1.4. Deploying containers in the cloud: Docker

Benefits of the Docker workflow

- Packaging software in a way that leverages the skills developers already have 
(simplifying or avoiding the need of build engineers)

- Bundling application software and required OS filesystems together in a single 
standardised image format

- Using packaged artifacts to test and deliver the exact same artifact to all 
systems in all environments

- Abstracting software applications from the hardware without sacrificing 
resources



1.4. Deploying containers in the cloud: Docker

Conclusions

- Systems like Docker define a standardised container for software

- A container can be distributed containing the software and everything needed for it 
to run, instead of distributing software as a package

- Being self-contained, containers eliminate dependencies and conflicts

- Containers are an efficient way to provide shared services, with the exact 
amount of resources (instead of virtual machines)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

