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1.1. OpenStack: introduction

OpenStack: IaaS (Infrastructure as a service)

OpenStack is a cloud operating system that controls large pools of compute, storage, and 
networking resources throughout a datacenter 



1.1. OpenStack: introduction

OpenStack 

Getting Started (Nebula = NASA  + RackSpace): 
http://docs.openstack.org/icehouse/training-guides/content/operator-getting-started.html

Open Source: http://www.openstack.org/community/ (API REST internally implemented in 
Python)

Supported by several enterprises (IBM, HP...): 
http://www.openstack.org/foundation/companies/



1.2. OpenStack: ways of interaction

OpenStack: Interacting with OpenStack

At least, four different ways of interaction with OpenStack are available:

1. Dashboard; https://iaas.ceta-ciemat.es/dashboard/
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1.2. OpenStack: ways of interaction

Basically, all these forms of interaction are based on a REST API

https://wiki.openstack.org/wiki/OpenStackRESTAPI
 (compatible with Rackspace API: http://api.rackspace.com/)

http://developer.openstack.org/api-ref.html (see some url examples in 
http://developer.openstack.org/api-ref-compute-v2.1.html)



1.3. OpenStack: deploying a microservices infrastructure

faafo: First App Application for OpenStack

Julia Sets: https://github.com/openstack/faafo/blob/master/faafo/worker/service.py
https://github.com/openstack/faafo/blob/master/doc/source/references.rst



1.3. OpenStack: deploying a microservices infrastructure

OpenStack: Application infrastructure

http://developer.openstack.org/firstapp-libcloud/



1.3. OpenStack: deploying a microservices infrastructure

https://github.com/ope
nstack/faafo/blob/mast
er/contrib/install.sh

https://git.openstack.or
g/cgit/openstack/faafo/
commit/



1.3. OpenStack: deploying a microservices infrastructure

l Instalation script for every microservice
l https://github.com/openstack/faafo/blob/master/contrib/install.sh

l Python source code of the example
l https://git.openstack.org/cgit/openstack/faafo/commit/

l Python script of the whole infrastructure deployment (by @CarlosTiradoG)
l https://gist.github.com/catirado/ecad1c28275fb87033a7



1.3. OpenStack: deploying a microservices infrastructure

A more familiar application architecture, including also load balancing
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1.4. Deploying containers in the cloud: Docker

- in the previous example, every microservice was using a single Virtual Machine

- virtualisation environments impose an overhead in the host system, in terms of 
resources and costs

- containers are operating-system-level virtualisation environments



1.4. Deploying containers in the cloud: Docker

- Differences among containers and virtual machines

- Containers are executed in virtual partitions using the OS calls

- Containers use the same OS (at least the same kernel) as the host machine

- Containers are more lightweight and easier to distribute, and therefore also to 
package applications

- They are specially suited to run multiple isolated applications on a single (virtual) 
machine



1.4. Deploying containers in the cloud: Docker

- A container is a group of processes running on an operating system that are isolated 
from other such groups of processes

- There are several levels of isolation involved in containers

- Solaris containers, called Zones, can be allocated network interfaces and network 
bandwidth regulated

- A container can interact (or kill) exclusively processes in its container

- On the other hand, the host machine can see and manage every process in every 
container
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1.4. Deploying containers in the cloud: Docker

Description of Docker. At the software level:

- docker is a single program

- Docker is a client/server architecture (Unix sockets or TCP ports, or both) 

- the Docker daemon (docker -d) can run on any number of servers

- a single client (docker run) can address any number of servers 

- an additional piece of software, the registry, stores Docker images and 
metadata about those images
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1.4. Deploying containers in the cloud: Docker

Description of Docker. At the network level:

- each container behaves as a host on a private network

- a Docker server behaves as a virtual bridge

- containers are clients behind the virtual bridge

- each container has an own IP address, allocated to the virtual interface

- ports of the host can be bind to containers ports'
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1.4. Deploying containers in the cloud: Docker

- Some case uses (or workflows...) where Containers are worth a try (1 / 3)

- PaaS (Platform as a Service); because of their ease of configuration and 
maintenance, and their low resource consumption, they shape an ideal solution for 
Platform as a Service providers 

https://www.quora.com/What-is-the-relationship-between-PaaS-and-containers-like-Docker



1.4. Deploying containers in the cloud: Docker

- Some case uses (or workflows...) where Containers are worth a try (2 / 3)

- Testing and developing environments. Similar to Virtual Machines, but with 
lower resource demand and consumption, containers are well suited for testing and 
developing environments



1.4. Deploying containers in the cloud: Docker

- Some case uses (or workflows...) where Containers are worth a try (3 / 3)

- Creating ephemeral machines; for instance, it is trivial to create and provision a 
container for a “one-use purpose”, such as building an application for Jenkins in 
an “ad-hoc” machine, and destroy it afterwards; 

http://www.stackengine.com/implications-of-docker-ephemeral-compute/

Instead of “daemons”, several tasks could be performed through containers



1.4. Deploying containers in the cloud: Docker

- LXC (2008, GNU GPL): https://linuxcontainers.org/

- Solaris containers (2004, Proprietary): http://www.oracle.com/technetwork/server-
storage/solaris/containers-169727.html
  

- Virtuozzo (2000, Proprietary): http://www.virtuozzo.com/

- Docker (2013, Apache License 2.0): https://www.docker.com/

Comparison: https://www.flockport.com/lxc-vs-docker/

 



1.4. Deploying containers in the cloud: Docker

- Docker was first introduced in the Python Developers Conference (March, 2013); 
Solomon Hykes

- The project was open-sourced and made available on GitHub: 
https://github.com/docker/docker

- Docker promises:

- Encapsulate the process of creating a distributable artifact for any application

- Deploying applications at scale into any environment

- Streamlining the workflow of agile software organizations

- Easing the DevOps communication and transference processes



1.4. Deploying containers in the cloud: Docker

Benefits of the Docker workflow

- Packaging software in a way that leverages the skills developers already have 
(simplifying or avoiding the need of build engineers)

- Bundling application software and required OS filesystems together in a single 
standardised image format

- Using packaged artifacts to test and deliver the exact same artifact to all 
systems in all environments

- Abstracting software applications from the hardware without sacrificing 
resources



1.4. Deploying containers in the cloud: Docker

Conclusions

- Systems like Docker define a standardised container for software

- A container can be distributed containing the software and everything needed for it 
to run, instead of distributing software as a package

- Being self-contained, containers eliminate dependencies and conflicts

- Containers are an efficient way to provide shared services, with the exact 
amount of resources (instead of virtual machines)
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