# Formalisation and execution of Linear Algebra: theorems and algorithms ${ }^{1}$ 

Jose Divasón



## UNIVERSIDAD DE LA RIOJA

PhD Defense

Advisors: Dr. Julio Rubio Dr. Jesús María Aransay

[^0]
## Introduction

Framework

Rank-Nullity Theorem

Gauss-Jordan
$Q R$ Decomposition

Echelon and Hermite Normal Form

Univalent Foundations

Conclusions

## Introduction

## Framework

## Software development is error-prone

## Windows

An error has occurred. To continue:
Press Enter to return to Windows, or
Press CTRL+ALT+DEL to restart your computer. If you do this, you will lose any unsaved information in all open applications.

Error: 0E : 016F : BFF9B3D4
Press any key to continue




## Software Verification

It is necessary to verify software somehow in order to minimise possible faults

## Software Verification

It is necessary to verify software somehow in order to minimise possible faults

- Software testing is one of the major software verification techniques used in practice


## Software Verification

It is necessary to verify software somehow in order to minimise possible faults

- Software testing is one of the major software verification techniques used in practice
- Testing can never be complete, infeasible for critical systems


## Software Verification

It is necessary to verify software somehow in order to minimise possible faults

- Software testing is one of the major software verification techniques used in practice
- Testing can never be complete, infeasible for critical systems
"Program testing can be used to show the presence of bugs, but never to show their absence!"
- Edsger W. Dijkstra


## Software Verification

It is necessary to verify software somehow in order to minimise possible faults

- Software testing is one of the major software verification techniques used in practice
- Testing can never be complete, infeasible for critical systems
"Program testing can be used to show the presence of bugs, but never to show their absence!"
- Edsger W. Dijkstra
- Formal methods refer to "mathematically rigorous techniques and tools for the specification, design and verification of software and hardware systems"


## Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence of inferences from the axioms, each inference made according to one of the stated rules

## Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence of inferences from the axioms, each inference made according to one of the stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell formally proved $1+1=2$ after 379 pages of work

## Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence of inferences from the axioms, each inference made according to one of the stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell formally proved $1+1=2$ after 379 pages of work
"My intellect never quite recovered. I have been ever since definitely less capable of dealing with difficult abstractions than I was before."

- Bertrand Russell


## Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence of inferences from the axioms, each inference made according to one of the stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell formally proved $1+1=2$ after 379 pages of work
"My intellect never quite recovered. I have been ever since definitely less capable of dealing with difficult abstractions than I was before."

- Bertrand Russell
- An interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration (Isabelle, Coq, ACL2,...)


## Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence of inferences from the axioms, each inference made according to one of the stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell formally proved $1+1=2$ after 379 pages of work
"My intellect never quite recovered. I have been ever since definitely less capable of dealing with difficult abstractions than I was before."

- Bertrand Russell
- An interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration (Isabelle, Coq, ACL2,...)
- For better or worse, "the machine magnifies competence, but it also magnifies incompetence..."


## Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence of inferences from the axioms, each inference made according to one of the stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell formally proved $1+1=2$ after 379 pages of work
"My intellect never quite recovered. I have been ever since definitely less capable of dealing with difficult abstractions than I was before."

- Bertrand Russell
- An interactive theorem prover is a software tool to assist with the development of formal proofs by human-machine collaboration (Isabelle, Coq, ACL2,...)
- For better or worse, "the machine magnifies competence, but it also magnifies incompetence. .." - Lawrence C. Paulson


## What

Formalisation of Linear Algebra algorithms

## Why

Generation of verified algorithms usable in practice

## How

- Using an interactive theorem prover
- Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning
- Apply it to formalise four well-known algorithms and their applications


## Toolkit

- Proof assistant: Isabelle (L. Paulson, T. Nipkow, M. Wenzel)
- Underlying logic: Higher-order logic (HOL) + type classes
- Additional libraries: HOL Multivariate Analysis (HMA, J. Harrison)
- Code generation infrastructure (F. Haftmann)
- Proof language: Intelligible semi-automated reasoning (Isar, M. Wenzel)
- Execution environments: GH(askell)C, PolyML (D. Matthews) and MLton


## Isabelle

- Isabelle is an interactive theorem prover created by Paulson in 1986
- Worldwide user community
- Flyspeck (the formal proof of the Kepler conjecture) and seL4 (an operating-system kernel)
- Isabelle is a generic theorem prover: it has been instantiated to support different object-logics
- The most widespread object-logic supported by Isabelle is higher-order logic (HOL)

$$
\text { HOL }=\text { Functional Programming }+ \text { Logic }
$$

## HMA - Multivariate Analysis session

- Our formalisations are based on the HOL Multivariate Analysis session
- Adequate vector and matrix representation from the formalisation point of view


## HMA - Multivariate Analysis session

- Our formalisations are based on the HOL Multivariate Analysis session
- Adequate vector and matrix representation from the formalisation point of view
typedef $(\alpha, \beta)$ vec $=$ UNIV :: $((\beta::$ finite $) \Rightarrow \alpha)$ set morphisms vec-nth vec-lambda ..
- Type System vs Logic


## State of the Art (January 2013)

- Isabelle/HOL has a number of Libraries that deal with Algebra and Multivariate Analysis


## State of the Art (January 2013)

- Isabelle/HOL has a number of Libraries that deal with Algebra and Multivariate Analysis
- Execution was not explored (either in Isabelle or HOL Light)


## State of the Art (January 2013)

- Isabelle/HOL has a number of Libraries that deal with Algebra and Multivariate Analysis
- Execution was not explored (either in Isabelle or HOL Light)
- Linear Algebra algorithms had barely been implemented


## State of the Art (January 2013)

- Isabelle/HOL has a number of Libraries that deal with Algebra and Multivariate Analysis
- Execution was not explored (either in Isabelle or HOL Light)
- Linear Algebra algorithms had barely been implemented
- Example:
T. Nipkow. Gauss-Jordan Elimination for Matrices Represented as Functions.

Archive of Formal Proofs (2011)

## Introduction

## Framework

## Rank-Nullity Theorem

## Gauss-Jordan

## QR Decomposition

## Echelon and Hermite Normal Form

## Univalent Foundations

## Conclusions

## Framework

Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning

- Formalise: Definition of elementary matrix operations


## Framework

Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning

- Formalise: Definition of elementary matrix operations
definition interchange-rows :: $\mathrm{a}^{\wedge} \mathrm{n}^{\wedge}{ }^{\prime} \mathrm{m} \Rightarrow{ }^{\prime} \mathrm{m} \Rightarrow{ }^{\prime} \mathrm{m} \Rightarrow \mathrm{A}^{\prime} \mathrm{a}^{\prime} \mathrm{n}^{\wedge} \mathrm{m}$ where interchange-rows $\mathrm{A} a \mathrm{~b}=(\chi \mathrm{i} j$. if $\mathrm{i}=a$ then $\mathrm{A} \$ \mathrm{~b} \$ \mathrm{j}$ else if $\mathrm{i}=\mathrm{b}$ then $\mathrm{A} \$ \mathrm{a} \$ \mathrm{j}$ else $\mathrm{A} \$ \mathrm{i} \$ \mathrm{j}$ )


## Framework

Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning

- Formalise: Definition of elementary matrix operations
definition interchange-rows :: $\mathrm{a}^{\wedge} \mathrm{n}^{\wedge}{ }^{\prime} \mathrm{m} \Rightarrow{ }^{\prime} \mathrm{m} \Rightarrow{ }^{\prime} \mathrm{m} \Rightarrow \mathrm{a}^{\prime} \mathrm{a}^{\prime} \mathrm{n}^{\wedge} \mathrm{m}$ where interchange-rows $A a b=(\chi i j$. if $i=a$ then $A \$ b \$ j$ else if $i=b$ then $\mathrm{A} \$ \mathrm{a} \$ \mathrm{j}$ else $\mathrm{A} \$ \mathrm{i} \$ \mathrm{j}$ )
lemma interchange-rows-mat-1:
shows interchange-rows (mat 1) ab** $\mathrm{A}=$ interchange-rows $\mathrm{A} a \mathrm{~b}$


## Framework

Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning

- Formalise: Definition of elementary matrix operations
- Execution and refinement: HMA matrix representation (vec) is refined to (efficient) executable representations (functions, immutable arrays). Code is exported to functional programming languages


## Framework

Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning

- Formalise: Definition of elementary matrix operations
- Execution and refinement: HMA matrix representation (vec) is refined to (efficient) executable representations (functions, immutable arrays). Code is exported to functional programming languages
- Connection:


## Framework

Framework to formalise, execute, refine and connect Linear Algebra algorithms with their mathematical meaning

- Formalise: Definition of elementary matrix operations
- Execution and refinement: HMA matrix representation (vec) is refined to (efficient) executable representations (functions, immutable arrays). Code is exported to functional programming languages
- Connection:
lemma linear_bij_rank_eq_ncols:
fixes f::'a::field^n::mod_type $\Rightarrow$ 'a^n
assumes linear (op $*$ s) (op *s) f
shows bij $\mathrm{f} \longleftrightarrow$ rank (matrix f ) $=$ ncols (matrix f )

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

Abstract representation

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

Abstract representation >

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

Abstract representation $\quad \rightarrow \quad>$ Abstract definitions

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

Abstract representation $\rightarrow \quad>$ Abstract definitions $\longrightarrow$ Proof

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

Abstract representation $\quad$ Abstract definitions $\longrightarrow$ Proof

Concrete representation

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement



Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement



Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

| Abstract representation | Abstract definitions |
| :---: | :---: |
| $\downarrow^{\text {Projection }}$ |  |
| Concrete representation | Concrete definitions |

Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement



Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement



Data refinement consists of replacing an abstract (probably non-executable) datatype by a more concrete (executable) one

## Refinement

| Abstract representation | Abstract definitions | $>$ Proof |
| :---: | :---: | :---: |
| $\downarrow$ Projection | $\checkmark$ Code lemmas |  |
| Concrete representation | Concrete definitions | Execution |

Two refinements have been carried out so that operations over the abstract type vec can be executed

1. From vec to function over finite types
2. From vec to iarray
3. From vec to iarray

In order to achieve better performance, a refinement has been developed using immutable arrays

- There exists a datatype in the Isabelle library called iarray which represents immutable arrays
- iarray is implemented in both SML (Vector structure) and Haskell (IArray class)
- We have refined vec elements and operations to iarray ones (proving the corresponding morphisms)

2. From vec to iarray

In order to achieve better performance, a refinement has been developed using immutable arrays

- There exists a datatype in the Isabelle library called iarray which represents immutable arrays
- iarray is implemented in both SML (Vector structure) and Haskell (IArray class)
- We have refined vec elements and operations to iarray ones (proving the corresponding morphisms)


## Features of this refinement

1. Code can be generated to both SML and Haskell
2. Improved performance

## Serialisations

- Isabelle datatypes are mapped to the corresponding implementation in the target languages
- Need to be trusted

| Isabelle/HOL | SML | Haskell |
| :---: | :---: | :---: |
| iarray | Vector.vector | IArray.Array |
| rat | IntInf.int/IntInf.int | Rational |
| real | Real.real | Double |
| bit | Bool.bool | Bool |

## Introduction

## Framework

Rank-Nullity Theorem

## Gauss-Jordan

## QR Decomposition

## Echelon and Hermite Normal Form

Univalent Foundations

## First part of the Fundamental Theorem of Linear Algebra

Theorem (The Rank-Nullity Theorem)
Let $\tau \in \mathcal{L}(V, W)$, where $\mathcal{L}(V, W)$ is the set of linear maps between a finite-dimensional vector space $V$ and a vector space $W$; then

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{ker} \tau)+\operatorname{dim}(\operatorname{im} \tau)
$$

where $\operatorname{ker} \tau \subseteq V$ and $\operatorname{im} \tau \subseteq W$

## First part of the Fundamental Theorem of Linear Algebra

## Theorem (The Rank-Nullity Theorem)

Let $\tau \in \mathcal{L}(V, W)$, where $\mathcal{L}(V, W)$ is the set of linear maps between a finite-dimensional vector space $V$ and a vector space $W$; then

$$
\operatorname{dim} V=\operatorname{dim}(\operatorname{ker} \tau)+\operatorname{dim}(\operatorname{im} \tau)
$$

where $\operatorname{ker} \tau \subseteq V$ and $\operatorname{im} \tau \subseteq W$
Reinterpretation with matrices
$V \cong \mathcal{F}^{n}, W \cong \mathcal{F}^{m}, \tau=A \in \mathcal{M}_{(m, n)}(\mathcal{F}), \operatorname{im} \tau=\mathrm{C}(A), \operatorname{ker} \tau=\mathrm{N}(A)$


Figure: Bases of the four Fundamental subspaces

## Isabelle statement

- Linear map statement
theorem rank-nullity-theorem:
shows $\mathrm{V} . \operatorname{dimension}=\mathrm{V} . \operatorname{dim}\{\mathrm{x} . \mathrm{f} \mathrm{x}=0\}+\mathrm{W} . \operatorname{dim}($ range f$)$


## Isabelle statement

- Linear map statement
theorem rank-nullity-theorem:
shows V.dimension $=\mathrm{V} . \operatorname{dim}\{\mathrm{x} . \mathrm{f} \mathrm{x}=0\}+\mathrm{W} . \operatorname{dim}($ range f$)$
- Matrix statement
theorem rank-nullity-theorem-matrices:
fixes A::field^'cols:: \{wellorder\}^^rows
shows ncols $A=$ vec.dim (null-space $A$ ) + vec.dim (col-space $A$ )


## Isabelle statement

- Linear map statement
theorem rank-nullity-theorem:
shows V.dimension $=\mathrm{V} . \operatorname{dim}\{\mathrm{x} . \mathrm{f} \mathrm{x}=0\}+\mathrm{W} . \operatorname{dim}($ range f$)$
- Matrix statement
theorem rank-nullity-theorem-matrices:
fixes A::field^'cols::\{wellorder\}^'rows
shows ncols $A=$ vec.dim (null-space $A)+$ vec.dim (col-space A)

圊 J. Divasón and J. Aransay. Rank-Nullity Theorem in Linear Algebra. Archive of Formal Proofs (2013)

## Introduction

## Framework

## Rank-Nullity Theorem

## Gauss-Jordan

## QR Decomposition

## Echelon and Hermite Normal Form

Univalent Foundations

## Conclusions

## From theorems to algorithms

- Gauss-Jordan elimination provides a direct way to compute the reduced row echelon form (rref) by means of elementary row operations over $A$


## From theorems to algorithms

- Gauss-Jordan elimination provides a direct way to compute the reduced row echelon form (rref) by means of elementary row operations over $A$

Gauss-Jordan example

$$
A=\left(\begin{array}{ccccc}
1 & -2 & 1 & -3 & 0 \\
3 & -6 & 2 & -7 & 0 \\
5 & -1 & 3 & 2 & 5 \\
0 & 7 & 4 & 5 & 1 \\
3 & -6 & 2 & -7 & 0
\end{array}\right) \longrightarrow A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

## From theorems to algorithms

- Gauss-Jordan elimination provides a direct way to compute the reduced row echelon form (rref) by means of elementary row operations over $A$

Gauss-Jordan example

$$
\begin{gathered}
A=\left(\begin{array}{ccccc}
1 & -2 & 1 & -3 & 0 \\
3 & -6 & 2 & -7 & 0 \\
5 & -1 & 3 & 2 & 5 \\
0 & 7 & 4 & 5 & 1 \\
3 & -6 & 2 & -7 & 0
\end{array}\right) \xrightarrow{\longrightarrow} A=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 3 \\
0 & 1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 & -2 \\
0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\operatorname{dim}(C(A))=4
\end{gathered}
$$



## Generalisations

From HMA and the reals to fields
lemma rank-Gauss-Jordan-real:
fixes $A::$ real^ $\mathrm{n}::\{\text { mod-type }\}^{\wedge}$ 'm::\{mod-type\}
shows rank $A=$ rank (Gauss-Jordan A)
by (metis Gauss-Jordan crk-is-preserved rank-col-rank)

R
J. Aransay and J. Divasón. Generalizing a Mathematical Analysis library in Isabelle/HOL. Proceedings of the 7th NASA Formal Methods Symposium (NFM 2015)

## Generalisations

From HMA and the reals to fields
lemma rank-Gauss-Jordan-real:
fixes $A::$ real^' $n::\{\text { mod-type }\}^{\wedge}$ 'm::\{mod-type\}
shows rank $A=\operatorname{rank}$ (Gauss-Jordan $A$ )
by (metis Gauss-Jordan crk-is-preserved rank-col-rank)
lemma rank-Gauss-Jordan:
fixes $A::^{\prime} \mathrm{a}::\{\text { field }\}^{\wedge}$ ' $\mathrm{n}::\{\text { mod-type }\}^{\wedge}$ 'm::\{mod-type $\}$
shows rank $A=$ rank (Gauss-Jordan $A$ )
by (metis Gauss-Jordan-def invertible-Gauss-Jordan-up-to-k row-rank-eq-col-rank rank-def crk-is-preserved)

园
J. Aransay and J. Divasón. Generalizing a Mathematical Analysis library in Isabelle/HOL. Proceedings of the 7th NASA Formal Methods Symposium (NFM 2015)

The following computations can be performed by means of the Gauss-Jordan algorithm

The following computations can be performed by means of the Gauss-Jordan algorithm

## Gauss-Jordan algorithm applications

- Reduced row echelon form
- Ranks
- Determinants
- Inverses
- Dimensions and bases of the null space, left null space, column space and row space
- Solution(s) of systems of linear equations

The following computations can be performed by means of the Gauss-Jordan algorithm

Gauss-Jordan algorithm applications

- Reduced row echelon form
- Ranks
- Determinants
- Inverses
- Dimensions and bases of the null space, left null space, column space and row space
- Solution(s) of systems of linear equations
(T. J. Divasón and J. Aransay. Gauss-Jordan Algorithm and Its Applications

Archive of Formal Proofs (2014)

## Ranks

$$
\left(\begin{array}{ccc}
1+i & 1-i & 0 \\
2-i & 1+3 i & 7+3 i \\
3 & 2+2 i & 7+3 i
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{C})
$$



## Determinants

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$



## Determinants

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}\left(\mathbb{Z}_{2}\right)
$$




## Inverse

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R}) \quad \operatorname{inv}(A)=\left(\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2
\end{array}\right)
$$

```
value "let A=(list_of_list_to_matrix
        [[1,1,0],
                        [0,1,1],
                                [1,0,1]]::real^3^3)
    in show_inverse (inverse_matrix A)"\
        \checkmark ~ \ ~ P r o o f ~ s t a t e ~ v ~ A u t o ~ u p d a t e
"Some [[1 / 2, - (1 / 2), 1 / 2], [1 / 2, 1 / 2, - (1 / 2)],
    [- (1 / 2), 1 / 2, 1 / 2]]"
    :: "real list list option"
```


## Inverse

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}\left(\mathbb{Z}_{2}\right)
$$

```
value "let A=(list_of_list_to_matrix
    [ [1, 1, 0] ,
    \([0,1,1]\),
    [1, 0, 1] ]::bit^3^3)
    in show_inverse (inverse_matrix A)"
    "None"
    :: "bit list list option"
```


## Bases and dimensions of fundamental subspaces

```
definition left_null_space :: "'a::{semiring_1}^'n^'m => ('a^'m) set"
    where "left_null_space A = {x, x v* A = 0}"
definition null_space :: "'a::{semiring_1}^'n^'m => ('a^'n) set"
    where "null_space A = {x, A *v x = 0}"
definition row_space :: "'a::{field}^'n^'m=>('a^'n) set"
    where "row_space A = vec.span (rows A)"
definition col_space :: "'a::{field}^'n^'m=>('a^'m) set"
    where "col_space A = vec.span (columns A)"
```

```
|value "let \(A=\left(l i s t \_o f \_l i s t \_t o \_m a t r i x\right.\)
    [ [ 3, 4, 0, 7],
        [ 1,-5, 2,-2],
    \([-1,4,0,3]\),
    [ 1,-1, 2, 2]]::rat^4^4)
    in vec_to_list` (basis_left_null_space A)"
```

"\{[- (1/4), - 1, - (3/4), 1]\}"
:: "rat list set"

## Solving a system of linear equations

$$
\begin{aligned}
x+y-4 z+10 t & =24 \\
3 x-2 y-2 z+6 t & =15
\end{aligned}
$$

## Solving a system of linear equations

$$
\begin{aligned}
& x+y-4 z+10 t=24 \\
& 3 x-2 y-2 z+6 t=15 \\
&\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\left(\begin{array}{c}
63 / 5 \\
57 / 5 \\
0 \\
0
\end{array}\right)+\alpha\left(\begin{array}{l}
2 \\
2 \\
1 \\
0
\end{array}\right)+\beta\left(\begin{array}{c}
-26 / 5 \\
-24 / 5 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

## Solving a system of linear equations

$$
\begin{aligned}
& x+y-4 z+10 t=24 \\
& 3 x-2 y-2 z+6 t=15 \\
&\left(\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right)=\left(\begin{array}{c}
63 / 5 \\
57 / 5 \\
0 \\
0
\end{array}\right)+\alpha\left(\begin{array}{l}
2 \\
2 \\
1 \\
0
\end{array}\right)+\beta\left(\begin{array}{c}
-26 / 5 \\
-24 / 5 \\
0 \\
1
\end{array}\right)
\end{aligned}
$$

[^1]
## Benchmarks (using iarrays)

| Size (n) | Poly/ML | GHC |
| :---: | :---: | :---: |
| 100 | 0.04 | 0.36 |
| 200 | 0.25 | 2.25 |
| 300 | 0.85 | 9.09 |
| 400 | 2.01 | 17.17 |
| 500 | 3.90 | 32.56 |
| 600 | 6.16 | 56.39 |
| 800 | 15.96 | 131.73 |
| 1000 | 32.08 | 255.84 |
| 1200 | 62.33 | 453.57 |
| 1400 | 97.16 | 715.87 |
| 1600 | 139.70 | 1097.41 |
| 1800 | 203.10 | 1609.72 |
| 2000 | 284.28 | 2295.30 |

Table: Time to compute the rref of randomly generated $\mathbb{Z}_{2}$ matrices.

## Imperative vs. Declarative

| Imperative version | (HOL-Imp) | Verified version | (iarray) |
| :--- | ---: | :--- | ---: |
| Function | Time perc. | Function | Time perc. |
| nth.fn | $29.8 \%$ | sub | $33.4 \%$ |
| upd.fn.fn.fn | $12.2 \%$ | of_fun | $32.7 \%$ |
| IntInf.schckTolnt64 | $12.1 \%$ | Intlnf.extdFromWord64 | $9.3 \%$ |
| make.fn | $8.1 \%$ | Intlnf.schckTolnt64 | $7.5 \%$ |
| plus_nat.fn | $7.9 \%$ | row_add_iarray.fn | $6.3 \%$ |
| $\ldots$ | $\ldots$ | $\ldots$ | $\ldots$ |
| Total |  |  |  |
| 9.42 seconds of CPU time |  | 10.06 seconds of CPU time |  |
| $(0.04$ seconds of GC) |  | $(0.22$ seconds of GC) |  |

Table: Profiling of the imperative and verified versions of Gauss-Jordan on a $600 \times 600$ matrix.

## C ++ vs. Verified version

| Matrix sizes | $\mathbf{C}++$ version | Verified version |
| :--- | ---: | ---: |
| $600 \times 600$ | 01.33 s. | 06.16 s. |
| $1000 \times 1000$ | 05.94 s. | 32.08 s. |
| $1200 \times 1200$ | 10.28 s. | 62.33 s. |
| $1400 \times 1400$ | 16.62 s. | 97.16 s. |

Table: C++ vs verified version of the Gauss-Jordan algorithm.

Both programs show a cubic performance, even if the verified version is using immutable arrays

囯
J. Aransay and J. Divasón. Formalization and execution of Linear Algebra: from theorems to algorithms. Proceedings of the International Symposium on Logic-Based Program Synthesis and Transformation: LOPSTR 2013
国
J. Aransay and J. Divasón. Formalisation in higher-order logic and code generation to functional languages of the Gauss-Jordan algorithm. Journal of Functional Programming. 2015

## Introduction

## Framework

## Rank-Nullity Theorem

## Gauss-Jordan

## QR Decomposition

## Echelon and Hermite Normal Form

Univalent Foundations

Theorem (Second Part of the Fundamental Theorem of Linear Algebra)
Given a matrix $A \in M_{(m, n)}(\mathbb{R})$

- In $\mathbb{R}^{n}, \mathrm{~N}(A)=\mathrm{C}\left(A^{T}\right)^{\perp}$ that is, the nullspace is the orthogonal complement of the row space

Theorem (Second Part of the Fundamental Theorem of Linear Algebra)
Given a matrix $A \in M_{(m, n)}(\mathbb{R})$

- In $\mathbb{R}^{n}, \mathrm{~N}(A)=\mathrm{C}\left(A^{T}\right)^{\perp}$ that is, the nullspace is the orthogonal complement of the row space
- In $\mathbb{R}^{m}, \mathrm{~N}\left(A^{T}\right)=\mathrm{C}(A)^{\perp}$, that is, the left nullspace is the orthogonal complement of the column space


## Second Part of the Fundamental Theorem of Linear Algebra

- theorem null-space-orthogonal-complement-row-space: fixes $A$ :: real^'cols^'rows
shows null-space $A=$ orthogonal-complement (row-space $A$ )


## Second Part of the Fundamental Theorem of Linear Algebra

- theorem null-space-orthogonal-complement-row-space: fixes $A$ :: real^'cols^'rows
shows null-space $A=$ orthogonal-complement (row-space $A$ )
- theorem left-null-space-orthogonal-complement-col-space:
fixes A :: real^'cols^'rows shows left-null-space $A=$ orthogonal-complement (col-space $A$ )


## Second Part of the Fundamental Theorem of Linear Algebra

- theorem null-space-orthogonal-complement-row-space: fixes $A$ :: real^'cols^'rows shows null-space $A=$ orthogonal-complement (row-space $A$ )
- theorem left-null-space-orthogonal-complement-col-space:
fixes $A::$ real ${ }^{\wedge}$ 'cols^'rows shows left-null-space $A=$ orthogonal-complement (col-space $A$ )


## From mathematical results to algorithms

The Gram-Schmidt process allows us to compute the mentioned orthogonal bases

## QR Decomposition

## Definition ( $Q R$ Decomposition)

The $Q R$ decomposition of a full column rank matrix $A \in M_{n \times m}(\mathbb{R})$ is a pair of matrices $(Q, R)$ such that

1. $A=Q R$
2. $Q \in M_{n \times m}(\mathbb{R})$ is a matrix whose columns are orthonormal vectors
3. $R \in M_{m \times m}(\mathbb{R})$ is upper triangular and invertible

## QR Decomposition

## Definition (QR Decomposition)

The $Q R$ decomposition of a full column rank matrix $A \in M_{n \times m}(\mathbb{R})$ is a pair of matrices $(Q, R)$ such that

1. $A=Q R$
2. $Q \in M_{n \times m}(\mathbb{R})$ is a matrix whose columns are orthonormal vectors
3. $R \in M_{m \times m}(\mathbb{R})$ is upper triangular and invertible

## Algorithm

1. $Q=$ Apply Gram-Schmidt to the columns of $A$, normalise the vectors
2. Compute $R$ as $R=Q^{T} A$

## QR Decomposition

- We have formalised the previous algorithm in Isabelle, and refined it to immutable arrays
- Computations can be carried out using either floats or (for suitable inputs) symbolically
- 2700 vs. 11000 loc.


## QR Decomposition



## QR Decomposition

## QR Decomposition

$$
\overbrace{\left(\begin{array}{lll}
1 & 2 & 6 \\
9 & 4 & 2 \\
0 & 0 & 4
\end{array}\right)}^{A}=\overbrace{\left(\begin{array}{ccc}
\frac{\sqrt{82}}{82} & \frac{9 \sqrt{82}}{82} & 0 \\
\frac{9 \sqrt{82}}{82} & \frac{-\sqrt{82}}{82} & 0 \\
0 & 0 & 1
\end{array}\right)}^{Q} \overbrace{\left(\begin{array}{ccc}
\sqrt{82} & \frac{19 \sqrt{82}}{41} & \frac{12 \sqrt{82}}{41} \\
0 & \frac{7 \sqrt{82}}{41} & \frac{26 \sqrt{82}}{41} \\
0 & 0 & 4
\end{array}\right)}^{R}
$$

## QR Decomposition



```
value "let \(A=\) list_of_list_to_matrix
    [ [1, 2, 6],
    \([9,4,2]\),
    [0, 0, 4] ]:: real^3^3 in
    show_matrix (fst (QR_decomposition A))"
```

"[[']1/82*sqrt(82)'', ''9/82*sqrt(82)'', ''0''], [''9/82*sqrt(82)'', ''-1/82*sqrt(82)'', ''0''], [''0'', ''0'', ''1'']]" :: "char list list list"

## Application: Least Squares Approximation

- Let us consider a system $A x=b$ without solution
- We can approximate the "solution" minimizing the error (least squares approximation). That is, compute $\hat{x}$ such that minimises $\|A \hat{x}-b\|$


Figure: The projection $p=A \hat{x}$ is the closest point to $b$ in $C(A)$

## Application: Least Squares Approximation

- We have formalised that $\hat{x}=R^{-1} Q^{T} b$
- $\hat{x}$ can be computed symbolically, $R^{-1}$ is computed by means of the Gauss-Jordan algorithm


## Advantages over Gauss-Jordan

- Both Gauss-Jordan and $Q R$ can be used to compute the least squares approximation of linear systems
- $Q R$ has a substantial edge in precision, when applied to floating-point matrices


## Example of $Q R$ precision over the Hilbert matrix of dimension 6

 Let$$
H_{6}=\left(\begin{array}{cccccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\
1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 \\
1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 \\
1 / 4 & 1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 & 1 / 9 \\
1 / 5 & 1 / 6 & 1 / 7 & 1 / 8 & 1 / 9 & 1 / 10 \\
1 / 6 & 1 / 7 & 1 / 8 & 1 / 9 & 1 / 10 & 1 / 11
\end{array}\right)
$$

and $b=\left(\begin{array}{llllll}1 & 0 & 0 & 0 & 0 & 5\end{array}\right)$ in $H_{6} x=b$. Do note that the determinant of $H_{6}$ is $1 / 186313420339200000$ and its condition number greater than $10^{7}$

## Advantages over Gauss-Jordan

Comparison of the approximations to $H_{6} x=b$

- 1: Least squares approximation using arbitrary precision ( $Q R$ or Gauss-Jordan algorithm)
- 2: $Q R$ approximation using floating-point numbers
- 3: Gauss-Jordan approximation using floating-point numbers

| $1:-13824$ | 415170 | -2907240 | 7754040 | -8724240 | 3489948 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2:-13824.0$ | 415170.0001 | -2907240.0 | 7754040.001 | -8724240.001 | 3489948.0 |
| $3:-13808.6421$ | 414731.7866 | -2904277.468 | 7746340.301 | -8715747.432 | 3486603.907 |

## Benchmarks

| Size $(\mathrm{n})$ | Poly/ML (s.) |
| :---: | :---: |
| 100 | 0.748 |
| 200 | 10.869 |
| 300 | 84.310 |
| 400 | 183.754 |

Table : Elapsed time (in seconds) to compute the $Q R$ decomposition of $H_{n}$ with floating-point precision

J. Divasón and J. Aransay. QR Decomposition. Archive of Formal Proofs. 2015J. Aransay and J. Divasón. A formalisation in HOL of the Fundamental Theorem of Linear Algebra and its application to the solution of the least squares problem. Journal of Automated Reasoning. 2016
J. Aransay and J. Divasón. Verified Computer Linear Algebra. EACA 2016

## Introduction

## Framework

## Rank-Nullity Theorem

## Gauss-Jordan

## QR Decomposition

Echelon and Hermite Normal Form

Univalent Foundations

## Conclusions

## Echelon Form

- Gauss-Jordan algorithm can only be applied to matrices whose elements belong to a field. For more general rings, a different algorithm must be used (involving gcd, Bézout coefficients...)
- We have formalised and refined an algorithm to compute the echelon form of a matrix over Bézout domains

- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- Execution is guaranteed, at least, over Euclidean domains, where a computable Bézout operation exists (it might be not unique)
- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- Execution is guaranteed, at least, over Euclidean domains, where a computable Bézout operation exists (it might be not unique)
- The echelon form algorithm is parametrised by a Bézout function
- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- Execution is guaranteed, at least, over Euclidean domains, where a computable Bézout operation exists (it might be not unique)
- The echelon form algorithm is parametrised by a Bézout function
- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- Execution is guaranteed, at least, over Euclidean domains, where a computable Bézout operation exists (it might be not unique)
- The echelon form algorithm is parametrised by a Bézout function
- $\mathbb{Z}$ and $\mathcal{F}[x]$ are proven to be instances of Euclidean domains
- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- Execution is guaranteed, at least, over Euclidean domains, where a computable Bézout operation exists (it might be not unique)
- The echelon form algorithm is parametrised by a Bézout function
- $\mathbb{Z}$ and $\mathcal{F}[x]$ are proven to be instances of Euclidean domains
- The following computations can be carried out in Euclidean domains
- Determinants
- Inverses
- Characteristic polynomial
- We have proven the correctness of the algorithm in Bézout domains, where Bézout coefficients exist for every $a, b$, (i.e., $\exists x y . a x+b y=z$, $z \in$ Units), but a computable Bézout function might not exist
- Execution is guaranteed, at least, over Euclidean domains, where a computable Bézout operation exists (it might be not unique)
- The echelon form algorithm is parametrised by a Bézout function
- $\mathbb{Z}$ and $\mathcal{F}[x]$ are proven to be instances of Euclidean domains
- The following computations can be carried out in Euclidean domains
- Determinants
- Inverses
- Characteristic polynomial
- 5000 vs. 11000 loc


## Statement for Bézout domains:

theorem echelon-form-of-invertible:
fixes A::'a::\{bezout-domain\}^^cols::\{mod-type\}^'rows::\{mod-type\}
assumes is-bezout-ext bezout
shows $\exists \mathrm{P}$. invertible $\mathrm{P} \wedge \mathrm{P} * * \mathrm{~A}=$ echelon-form-of A bezout $\wedge$ echelon-form (echelon-form-of $A$ bezout)

## Statement for Bézout domains:

theorem echelon-form-of-invertible:
fixes A::'a::\{bezout-domain\}^'cols::\{mod-type\}^'rows::\{mod-type\}
assumes is-bezout-ext bezout
shows $\exists \mathrm{P}$. invertible $\mathrm{P} \wedge \mathrm{P} * * \mathrm{~A}=$ echelon-form-of A bezout $\wedge$ echelon-form (echelon-form-of $A$ bezout)

Statement for Euclidean domains:
corollary echelon-form-of-euclidean-invertible:
fixes A::'a::\{euclidean-ring\}^'cols:: \{mod-type\}^'rows::\{mod-type\}
shows $\exists \mathrm{P}$. invertible $\mathrm{P} \wedge \mathrm{P} * * \mathrm{~A}=$ (echelon-form-of A euclid-ext2)
$\wedge$ echelon-form (echelon-form-of A euclid-ext2)

## Statement for Bézout domains:

theorem echelon-form-of-invertible:
fixes A::'a::\{bezout-domain\}^^cols::\{mod-type\}^'rows::\{mod-type\}
assumes is-bezout-ext bezout
shows $\exists \mathrm{P}$. invertible $\mathrm{P} \wedge \mathrm{P} * * \mathrm{~A}=$ echelon-form-of A bezout $\wedge$ echelon-form (echelon-form-of $A$ bezout)

## Statement for Euclidean domains:

corollary echelon-form-of-euclidean-invertible:
fixes A::'a::\{euclidean-ring\}^'cols:: \{mod-type\}^'rows:: \{mod-type\}
shows $\exists \mathrm{P}$. invertible $\mathrm{P} \wedge \mathrm{P} * * \mathrm{~A}=$ (echelon-form-of A euclid-ext2)
$\wedge$ echelon-form (echelon-form-of A euclid-ext2)
J. Divasón and J. Aransay. Echelon Form. Archive of Formal Proofs. 2015
I. J. Aransay and J. Divasón. Formalisation of the Computation of the Echelon Form of a Matrix in Isabelle/HOL. Formal Aspects of Computing. 2016

## Determinant

$$
A=\left(\begin{array}{ccc}
-5 x^{2}+4 x+1 & x & -3 x^{2} \\
4 x-2 & 0 & -x+2 \\
4 x-1 & 3 x & 4 x^{3}
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R}[x])
$$

## Determinant

$$
A=\left(\begin{array}{ccc}
-5 x^{2}+4 x+1 & x & -3 x^{2} \\
4 x-2 & 0 & -x+2 \\
4 x-1 & 3 x & 4 x^{3}
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R}[x])
$$

```
value "det (list_of_list_to_matrix
    [[[:1,4,-5:],[:0, 1:],[:0,0,-3:]],
    [[:-2,4:],[:0:],[:2,-1:]],
    [[:-1,4:],[:0,3:],[:0,0,0,4:]]]::real poly^3^3)""
                                    \(\checkmark\) Proof state \(\checkmark\) Auto update Update Search:
"[:0, - 8, - 12, 56, - 43, - 16:]"
    :: "real poly"
```


## Determinant

$$
A=\left(\begin{array}{ccc}
-5 x^{2}+4 x+1 & x & -3 x^{2} \\
4 x-2 & 0 & -x+2 \\
4 x-1 & 3 x & 4 x^{3}
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R}[x])
$$

```
value "det (list_of_list_to_matrix
    \([[[: 1,4,-5:],[: 0,1:],[: 0,0,-3:]]\),
    [[:-2,4:],[:0:],[:2,-1:]],
    [[:-1,4:],[:0,3:],[:0,0,0,4:]]]::real poly^3^3)""
```

$\checkmark$ Proof state $\triangle$ Auto update Update Search:
"[:0, - 8, - 12, 56, - 43, - 16:]"
: : "real poly"

$$
\operatorname{det}(A)=-16 x^{5}-43 x^{4}+56 x^{3}-12 x^{2}-8 x
$$

## Inverse

$$
A=\left(\begin{array}{ccc}
1 & -2 & 4 \\
1 & -1 & 1 \\
0 & 1 & -2
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{Z}) \quad B=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{Z})
$$

$$
\begin{aligned}
& \text { value "let } A=\text { (list_of_list_to_matrix } \\
& {[[1,-2,4],[1,-1,1],[0,1,-2]]:: i n t \wedge 3^{\wedge} 3 \text { ) }} \\
& \text { in show_matrix (inverse_matrix } A \text { )" }
\end{aligned}
$$

```
"Some [[1, 0, 2], [2, - 2, 3], [1, - 1, 1]]"
    :: "int list list option"
```

$$
\begin{gathered}
\text { value "let } A=\text { (list_of_list_to_matrix } \\
\left.[[3,0,0],[0,1,0],[0,0,1]]:: \text { int^ }^{\wedge} 3\right) \\
\text { in show_matrix (inverse_matrix A) " }
\end{gathered}
$$

- Proof state elaito update Updote search [
"None"
:: "int list list option"

$$
\operatorname{inv}(A)=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -2 & 3 \\
1 & -1 & 1
\end{array}\right)
$$

$\nexists i n v(B)$

## Characteristic polynomial

$$
A=\left(\begin{array}{lll}
3 & 5 & 1 \\
2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

value "let $A=($ list_of_list_to_matrix

$$
\left.[[3,5,1],[2,1,3],[1,2,1]]:: r e a l \wedge 3^{\wedge} 3\right)
$$

in charpoly A"
$\checkmark$ Proof state $\checkmark$ Auto update Update Search:
"[:7, - 10, - 5, 1:]"
:: "real poly"

## Characteristic polynomial

$$
A=\left(\begin{array}{lll}
3 & 5 & 1 \\
2 & 1 & 3 \\
1 & 2 & 1
\end{array}\right) \in \mathcal{M}_{3 \times 3}(\mathbb{R})
$$

value "let $\mathrm{A}=$ (list_of_list_to_matrix [ [ $3,5,1],[2,1,3],[1,2,1]]:$ :real^3^3) in charpoly A"

$$
\square \text { Proof state update Update Search: }
$$

"[:7, - 10, - 5, 1:]"
:: "real poly"

$$
\text { charpoly }(A)=x^{3}-5 x^{2}-10 x+7
$$

## Hermite normal form

## Definition (Hermite normal form)

A matrix $H$ is said to be the Hermite normal form of a given matrix $A$ with elements in a Bézout ring iff:

1. $H$ is in echelon form;
2. the first nonzero element of a nonzero row belongs to the complete set of nonassociates;
3. Let $h$ be the first nonzero element of a nonzero row; each element above $h$ belongs to the corresponding complete set of residues of $h$;
4. There exists an invertible matrix $P$ such that $A=P H$;

## Hermite normal form

## Definition (Hermite normal form)

A matrix $H$ is said to be the Hermite normal form of a given matrix $A$ with elements in a Bézout ring iff:

1. $H$ is in echelon form;
2. the first nonzero element of a nonzero row belongs to the complete set of nonassociates;
3. Let $h$ be the first nonzero element of a nonzero row; each element above $h$ belongs to the corresponding complete set of residues of $h$;
4. There exists an invertible matrix $P$ such that $A=P H$;

The Hermite normal form is unique, up to the sets of nonassociates and residues, which in our work are parameters of the Hermite operation.

## Hermite normal form

## Definition (Hermite normal form)

A matrix $H$ is said to be the Hermite normal form of a given matrix $A$ with elements in a Bézout ring iff:

1. $H$ is in echelon form;
2. the first nonzero element of a nonzero row belongs to the complete set of nonassociates;
3. Let $h$ be the first nonzero element of a nonzero row; each element above $h$ belongs to the corresponding complete set of residues of $h$;
4. There exists an invertible matrix $P$ such that $A=P H$;

The Hermite normal form is unique, up to the sets of nonassociates and residues, which in our work are parameters of the Hermite operation.

## Hermite normal form

lemma Hermite-unique:
fixes K::'a::bezout-ring-div^'n::mod-type^'n::mod-type
assumes $\mathrm{A}=\mathrm{P} * * \mathrm{H}$ and $\mathrm{A}=\mathrm{Q} * * \mathrm{~K}$
and invertible $A$
and invertible $P$ and invertible $Q$ and Hermite associates residues H and Hermite associates residues K
shows $\mathrm{H}=\mathrm{K}$J. Divasón and J. Aransay. Hermite Normal Form. Archive of Formal Proofs. 2016

## Introduction

## Framework

## Rank-Nullity Theorem

## Gauss-Jordan

## QR Decomposition

## Echelon and Hermite Normal Form

## Univalent Foundations

## Conclusions

## Univalent Foundations

Mathematicians' lives are about to change. Soon enough, they're going to find themselves doing mathematics at the computer, with the aid of computer proof assistants. Soon, they won't consider a theorem proven until a computer has verified it. Soon, they'll be able to collaborate freely, even with mathematicians whose skills they don't have confidence in. And soon, they'll understand the foundations of mathematics very differently.


- Vladimir Voevodsky
- Active area of research presented as a new foundation of Mathematics
- Homotopy type theory is an attempt to formally redefine the whole mathematical behaviour in a way that is both much closer to how informal mathematics is actually done and to how mathematics should be implemented to be computationally checkable.

It makes sense to implement the model in an interactive theorem prover Approach: try to reuse as many existing Isabelle/HOL libraries as possible

# A piece of Voevodsky's simplicial model 

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s \operatorname{set}^{o p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow$ $X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s S^{\circ p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s \operatorname{Set}^{O P} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{\circ p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Pullback

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s \operatorname{Set}^{O P} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{\circ p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Pullback
3. Functors and categories

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: \mathbf{s S e t}^{o p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Pullback
3. Functors and categories
4. sSet

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s S^{\circ}{ }^{\mathbf{o p}} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Op category
3. Pullback
4. Functors and categories
5. sSet

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s^{\text {Set }}{ }^{o p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Op category
3. Pullback
4. Set category
5. Functors and categories
6. sSet

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s \operatorname{set}^{o p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \boldsymbol{\Delta}^{\circ p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Op category
3. Pullback
4. Functors and categories
5. Set category
6. $\Delta$ category
7. sSet

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s \operatorname{set}^{o p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Pullback
3. Functors and categories
4. sSet
5. Op category
6. Set category
7. $\Delta$ category
8. Yoneda embedding

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}: s \operatorname{set}^{o p} \rightarrow$ Set.

## Definition

$$
W:=\mathbf{W} \circ y^{o p}: \Delta^{o p} \rightarrow \text { Set }
$$

where $y$ denotes the Yoneda embedding $y: \Delta \rightarrow s$ Set.

1. Quotient sets
2. Op category $X$
3. Pullback $X$
4. Functors and categories
5. sSet $X$
6. Set category
7. $\Delta$ category $X$
8. Yoneda embedding $X$

## Definition

Given a simplicial set $X$ we define $\mathbf{W}(X)$ to be the set of isomorphism classes of well-ordered morphisms $f: Y \rightarrow X$. Given a morphism $t: X^{\prime} \rightarrow X$ we define $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ by $\mathbf{W}(t)=t^{*}$ (the pullback functor). This provides a functor $\mathbf{W}$ : osSet ${ }^{o p} \rightarrow$ Set.

- We must show that $\mathbf{W}$ : osSet ${ }^{o p} \rightarrow$ Set is a functor in Isabelle/HOL.
- Among other things, we have to prove that $\mathbf{W}(t): \mathbf{W}(X) \rightarrow \mathbf{W}\left(X^{\prime}\right)$ is an arrow in a Set-category implemented in Isabelle/HOL.


## PROBLEM

## Set category in HOL

```
record 'c set-arrow =
    set-dom :: 'c set
    set-func :: 'c = 'c
    set-cod :: 'c set
definition
    set-arrow :: ['c set, 'c set-arrow] }=>\mathrm{ bool where
    set-arrow U f \longleftrightarrow set-dom f\subseteqU
        \set-cod f\subseteqU
        set-func f }\in\mathrm{ (set-dom f) }->\mathrm{ (set-cod f)
        set-func f \in extensional (set-dom f)
```

```
definition
    set-cat :: 'c set \(\Rightarrow\) ('c set, 'c set-arrow) cate-
gory where
    set-cat U =
    (
        ob = Pow U,
        ar \(=\{\) f. set-arrow U f \(\}\),
        dom \(=\) set-dom,
        \(\operatorname{cod}=\) set-cod,
        id \(=\) set-id U,
        comp \(=\) set-comp
    )
```

- The variable set $U$ will fix the underlying type ' $c$ of the category, since its objects will be subsets of $U$.
- In fact, this corresponds to what is sometimes called Ens, "the category of all sets and functions within a (variable) set $U$ ", which is a small category.


## Example

Let $A=\{1,2,3\}$ be a set of natural numbers and $B=\{$ True, False $\}$ a boolean set. Then, the following function would belong to the Set-category (mathematically speaking) but not to the corresponding implementation in Isabelle/HOL:

$$
\begin{gathered}
f: A \longrightarrow B \\
1 \longrightarrow \text { True } \\
2 \longrightarrow \text { True } \\
3 \longrightarrow \text { False }
\end{gathered}
$$

## Definition (Pullback on morphisms)

Let $X^{\prime}, X, Y_{1}, Y_{2}$ be simplicial sets, $f_{1}: Y_{1} \rightarrow X$ and $f_{2}: Y_{2} \rightarrow X$ wellordered morphisms, $t: X^{\prime} \rightarrow X$ a morphism and $g: Y_{1} \rightarrow Y_{2}$ an isomorphism between the well-ordered morphisms $f_{1}$ and $f_{2}$. Then, the pullback on morphisms is defined as follows:


## SOLUTION?

## SOLUTION?

Use another logic: HOLZF (HOL + ZF)

The definition of the Set-category in Isabelle/HOLZF is the following one:

```
definition
    SET' :: (ZF, ZF) Category where
    SET' \equiv0
        Category.Obj = {x. True },
        Category.Mor = {f. isZFfun f },
        Category.Dom = ZFfunDom ,
        Category.Cod = ZFfunCod,
        Category.Id = \lambdax. ZFfun x x ( }\lambda\times.\timesx)\mathrm{ ,
        Category.Comp = ZFfunComp
    |)
definition SET \equiv MakeCat SET'
```

- Objects and arrows are of the same type
- Products are also of type ZF

Let $Y_{1}, Y_{2}$ and $X$ be simplicial sets together with $\partial_{Y_{1}}, s_{Y_{1}}, \partial_{Y_{2}}, s_{Y_{2}}, \partial_{X}$ and $s_{X}$ as the corresponding face and degeneracy operators. Let $t: Y_{1} \rightarrow X$ and $f: Y_{2} \rightarrow X$ be morphisms. Then the following construction is a simplicial set:

$$
\begin{aligned}
Y_{1} \times_{(t, f)} Y_{2} & =\left\{\left(y_{1}, y_{2}\right) . y_{1} \in Y_{1} \wedge y_{2} \in Y_{2} \wedge t\left(y_{1}\right)=f\left(y_{2}\right)\right\} \\
\partial_{Y_{1} \times(t, f)} Y_{2} & =\left(\lambda\left(y_{1}, y_{2}\right) \in Y_{1} \times_{(t, f)} Y_{2} .\left(\partial_{Y_{1}}\left(y_{1}\right), \partial_{Y_{2}}\left(y_{2}\right)\right)\right. \\
s_{Y_{1} \times(t, f)} Y_{2} & =\left(\lambda\left(y_{1}, y_{2}\right) \in Y_{1} \times_{(t, f)} Y_{2} .\left(s_{Y_{1}}\left(y_{1}\right), s_{Y_{2}}\left(y_{2}\right)\right)\right.
\end{aligned}
$$

sublocale Y1-times-Y2-tf: simplicial-set $(\lambda n . \operatorname{Sep}(Y 1 n|x| Y 2 n)(\lambda x . t n($ Fst $x)=f n($ nnd $x)))$
( $\mathrm{\lambda in}_{\mathrm{n}}$. Opair (dy1 in (Fst x)) (dy2 in (Snd x)) )
( $\lambda \mathrm{i} \mathrm{n} \times$. Opair (sy1 in (Fst x)) (sy2 in(Snd x$)$ ))

- We have ported the development to Isabelle/HOLZF
- HOLZF seems to avoid the restriction
Introduction
Framework
Rank-Nullity Theorem
Gauss-Jordan
QR Decomposition
Echelon and Hermite Normal Form
Univalent Foundations
Conclusions


## State of the art (June 2016) \& Related work

Thiemann and Yamada; computation of Jordan Normal Form in Isabelle
國 R. Thiemann, A. Yamada. Matrices, Jordan Normal Forms, and Spectral Radius Theory. Archive of Formal Proofs. 2015

## State of the art (June 2016) \& Related work

Thiemann and Yamada; computation of Jordan Normal Form in Isabelle
$\square$ R. Thiemann, A. Yamada. Matrices, Jordan Normal Forms, and Spectral Radius Theory. Archive of Formal Proofs. 2015
Dénès et al; implementation of Smith Normal Form in CoqEAL
$\square$ M. Dénès, A. Mörtberg, and V. Siles. A refinement-based approach to computational algebra in COQ. Interactive Theorem Proving. 2012

## State of the art（June 2016）\＆Related work

Thiemann and Yamada；computation of Jordan Normal Form in Isabelle
$\square$ R．Thiemann，A．Yamada．Matrices，Jordan Normal Forms，and Spectral Radius Theory． Archive of Formal Proofs． 2015
Dénès et al；implementation of Smith Normal Form in CoqEAL
$\square$ M．Dénès，A．Mörtberg，and V．Siles．A refinement－based approach to computational algebra in COQ．Interactive Theorem Proving． 2012
Gonthier；implementation of LUP decomposition in SSReflect
目 G．Gonthier．Point－Free，Set－Free Concrete Linear Algebra．Interactive Theorem Proving． 2011

## Conclusions (1/2)

- Linear Algebra algorithms can be implemented in HMA (linked to mathematical results)
- Framework for implementing
- Four well-known algorithms have been formalised (almost 40000 loc)
- Use of parametrised algorithms
- Side-products: generalisation of HMA, ring theory, serialisations, ...


## Conclusions (2/2)

- Algorithms are executable inside of Isabelle
- Better performance can be obtained thanks to code generation in SML and Haskell
- The use of immutable arrays does not pose a drawback, even in comparison to imperative programming
- The generated code is usable in practice
- HOLZF seems to be useful to formalise the simplicial model for Univalent Foundations

Thanks



[^0]:    ${ }^{1}$ This work has been supported by the research grant FPI-UR-12 from Universidad de La Rioja and by the project MTM2014-54151-P from Ministerio de Economía y Competitividad

[^1]:    |value "let $A=\left(l i s t \_o f \_l i s t \_t o \_m a t r i x ~[[1,1,-4,10],[3,-2,-2,6]]:: r a t^{\wedge} 4^{\wedge} 2\right)$; b=(list_to_vec [24,15]::rat^2)
    in (print_result_solve (solve A b))"
    "Some ([63 / 5, 57 / 5, 0, 0], \{[2, 2, 1, 0], [- (26 / 5), - (24 / 5), 0, 1]\})" :: "(rat list $\times$ rat list set) option"

