Transferring lemmas and proofs in Isabelle/HOL:
a survey!

Jesls Aransay

UNIVERSIDAD
DE LA RIOJA

Seminario de Informatica Mirian Andrés
11th October 2016

1 This work has been supported by the project MTM2014-54151-P from Ministerio de
Economia y Competitividad (Gobierno de Espafia)

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 1/30

Introduction
Goal

Transferring propositions in Isabelle/HOL
Isabelle Refinement Framework
Transfer and Lifting
Types to sets
Code generation
Some use data and other works on Refinements

Conclusions

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 2 /30

Introduction Goal

Goal

Situations arise (in ITP) where different representations of data types are
(needed?) used

You shall not be blamed for this, but you have to cope with it...

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 3 /30

Goal
Goal

Situations arise (in ITP) where different representations of data types and
versions of algorithms are (needed?) used

For instance vectors (and therefore, matrix representation)

» dense (lists, arrays, etc.)
» sparse (lists, arrays, etc.)

» functions (over the naturals, with a finite number of indexes with
nonzero value)

» pairs of a natural number and a function from the naturals to the
vector elements

» functions (over a finite type of indexes)

> etc.

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 4 /30

Goal
Goal

Situations arise (in ITP) where different representations of data types and
algorithms are (needed?) used

Archive of Formal Proofs

As a matter of example, in the Isabelle Archive of Formal Proofs, at least
10 entries directly mention the word “Refinement”, in combination with:

» Framework

» Imperative Programs
Calculus

» Data

v

v

Monadic Programs

> etc.

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 5 /30

Goal
Goal

Purpose

We illustrate some examples and standard methodologies in Isabelle/HOL
to (manually or automatically) transfer propositions among data type
representations

Sorted from more to less “universally” applicable

» Manually: code generation

v

Automatically: Lift and Transfer
» Automatically: Types to sets
» Automatically: Isabelle Refinement Framework

| will present them in reverse order

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 6 /30

Introduction Goal

Disclaimer

Any omissions and mistakes in this survey are my own and only
responsibility

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 7 /30

Transferring propositions in Isabelle/HOL Isabelle Refinement Framework

Isabelle Refinement Framework

Author

Peter Lammich

Goal

To verify graph and automata algorithms, starting from abstract
algorithms and refining them to concrete implementations

Components

v

Isabelle Collections Framework

v

Refinement for monadic programs

v

Automatic Data Refinement

v

Imperative Refinement Framework

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 8 /30

Transferring propositions in Isabelle/HOL Isabelle Refinement Framework

Isabelle Refinement Framework

Isabelle Collections Framework (ICF)

ICF

» It provides uniform interfaces to various “abstract” data structures
(sets, maps, sequences). Locales are used to represent Java interfaces

» It contains concrete implementations of such structures (by means of
red-black trees, lists, hashing, tries): data refinement

» It offers heuristics that select, in the code generation phase, the best
concrete structure for a given interface

@ P. Lammich. Collections Framework. Archive of Formal Proofs.

http://isa-afp.org/entries/Collections.shtml. 2008

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 9 /30

http://isa-afp.org/entries/Collections.shtml

Transferring propositions in Isabelle/HOL Isabelle Refinement Framework

Isabelle Refinement Framework

Refinement for monadic programs

Monadic programs

» Based on the idea of stepwise refinement (both of algorithms and
data types)

» It introduces relations (instead of functions) and relational
programming to support nondeterminism (ex. P x)

» Programs are represented by a nondeterminism monad on which a
refinement calculus is defined

» There is no support for state representation

@ P. Lammich. Refinement for Monadic Programs. Archive of Formal Proofs.

http://isa-afp.org/entries/Refine_Monadic.shtml. 2012

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 10 / 30

http://isa-afp.org/entries/Refine_Monadic.shtml

Transferring propositions in Isabelle/HOL Isabelle Refinement Framework

Isabelle Refinement Framework

Automatic Data Refinement

Autoref

» Automatically refines algorithms over abstract concepts to algorithms
over concrete implementations

> It uses relational parametricity in data type refinements

» It improves the degree of automation of the ICF and the IRF

@ P. Lammich. Automatic Data Refinement. Archive of Formal Proofs.

https://www.isa-afp.org/entries/Automatic_Refinement.shtml. 2013

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 11 /30

https://www.isa-afp.org/entries/Automatic_Refinement.shtml

Transferring propositions in Isabelle/HOL Isabelle Refinement Framework

Isabelle Refinement Framework

Automatic Data Refinement

Autoref - Related work

» In our proof of the echelon form, a similar idea is implemented ad hoc
to prove the existence of a reduced row echelon form in Bezout
domains and its computability in Euclidean domains

» The algorithm echelon-form-of is parameterised by a function bezout
» The correctness of the algorithm is proved in Bézout domains subject
to the existence of the bezout function

» This premise holds in Euclidean domains (thus, it is removed)

@ J. Aransay, J. Divasén. Formalisation of the Computation of the Echelon Form of a Matrix

in Isabelle/HOL. Formal Aspects of Computing. 2016.

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 12 / 30

Transferring propositions in Isabelle/HOL Isabelle Refinement Framework

Isabelle Refinement Framework

Imperative Refinement Framework

» It is based on Imperative/HOL, where a heap exception monad is
used to represent imperative programs

» Abstract programs in the nondeterminism monad of IRF are refined to
the heap exception monad

» The Imperative/HOL program and the refinement proof are
automatically synthesised (apart from hints about which imperative
data structures to use)

@ P. Lammich. The Imperative Refinement Framework. Archive of Formal Proofs.

https://www.isa-afp.org/entries/Refine_Imperative_HOL.shtml. 2016

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 13 /30

https://www.isa-afp.org/entries/Refine_Imperative_HOL.shtml

Transferring propositions in Isabelle/HOL Transfer and Lifting

Transfer and Lifting

Authors

Brian Huffman and Ondréj Kuncar
Defining new types

» Two common ways to define new types in Isabelle/HOL are:
» as quotient types (Z from N, Q from Z)
> as subsets of existing types (fset as a subset of set)

> Lifting is a utility which allows users to define constants in these new
types from existing constants in the original types

» Transfer is a tool that enables to automatically transfer propositions
between two different types

@ B. Huffman, and O. Kunéar Lifting and Transfer: A Modular Design for Quotients in

Isabelle/HOL. CPP 2013. pp. 131 — 146. 2016

Isabelle/HOL transferring mechanisms 11th October 2016 14 / 30

Transfer and Lifting
Transfer and Lifting

Transfer

» Based on the idea of relational parametricity (Reynolds, Wadler)

» A relation between two types (one “abstract” and one “raw”) is
defined

» Then, relators among (some) constants and functions of each type
are defined

» The Transfer package automatically proves the equivalence of
propositions in the “raw” and “abstract” types, and permits to prove
any of the versions

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 15 / 30

Transfer and Lifting
Transfer and Lifting

Transfer

Example - Obtained from the Isabelle Library (FSet.thy, Kuncar,
Kaliszyk, Urban and Popescu)

> Finite sets are defined as a type fset (the set of sets which are finite)

» A relation is defined among the types fset and set (by means of
setup-lifting)

» A relator is defined among the operation finsert for finite sets and
insert of sets (by means of l1ift-definition)

» The proposition finsert-commute, proven for type set, is
automatically proved for fset (see next slide)

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 16 / 30

Transfer and Lifting
Transfer and Lifting

Transfer

typedef ‘a fset = {A :: ‘a set. finite A} morphisms fset Abs-fset ...
setup-lifting type-definition-fset

lift-definition finsert :: 'a = ‘a fset = ‘a fset is insert ...

lemmas finsert-commute = insert-commute [Transfer.transferred)]

lemma insert-commute: insert x (insert y (A::« set)) = insert y (insert x A)
lemma finsert-commute: finsert x (finsert y (A::ax fset)) = finsert y (finsert x A)

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 17 / 30

Transfer and Lifting
Transfer and Lifting

Lifting
» As already seen in the previous slide, Lifting allows to lift terms from

the raw (underlying) to the abstract (new) type

» The package supports four kind of abstraction types: type copies,
subtypes, total quotients, and partial quotients

» The command setup-lifting together with the new type definition
(Rep, Abs, {x. P x}), proves that the abstract type is a quotient of
the raw type

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 18 / 30

Transfer and Lifting
Transfer and Lifting

Lifting

» The command 1ift-definition imposes a respectfulness proof
obligation (for instance, in the case of finsert)

lemma finite s = finite (insert a s)

» Once the theorem has been proved, the package defines the new
constant and the transfer rule

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 19 / 30

Transfer and Lifting
Transfer and Lifting

Remarkable examples

» Types int, rat, and real in the Isabelle distribution

» Types fset (from set and as a quotient of 1ist), red-black trees (as
a subset of trees)

» The lifting of (the type of) vectors in HOL Analysis Library (functions
with a finite domain) and the Jordan Normal Form library (pairs of
dimension and a characteristic function, and already a Lifting type)
allowed to transfer Brouwer's fixpoint theorem from HA to JNF

@ J. Divasén, O. Kunéar, R. Thiemann, and A. Yamada. Perron-Frobenius Theorem for
Spectral Radius Analysis. Archive of Formal Proofs.

http://isa-afp.org/entries/Perron_Frobenius.shtml 2016

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 20 / 30

http://isa-afp.org/entries/Perron_Frobenius.shtml

Transferring propositions in Isabelle/HOL [EEE7EERTRES

From types to sets

Authors

Ondrej Kuncar and Andrei Popescu

Local typedef

» Several concepts are defined and theorems are proved in Isabelle/HOL
over types

» Working over types is cleaner
» Sometimes sets are preferred; they permit to use subdomains

» Local typedef is a mechanism to locally define types which are
isomorphic to sets

» Properties are proved over this type, and transferred to the original set

» The Transfer tool can be applied to prove that the theorem over a
type also holds over its isomorphic set

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 21 /30

Transferring propositions in Isabelle/HOL [EEE7EERTRES

From types to sets

Local typedef - Remarkable case studies

» Topological proofs: “every compact set is closed”

» Berlekamp's Factorisation algorithm; an algorithm over records and
sets is defined, and formalised using its types version

@ O. Kunéar, A. Popescu. From Types to Sets by Local Type Definitions in Higher-Order
Logic. Interactive Theorem Proving 2016

@ J. Divasén, S. Joosten, R. Thiemann, and A. Yamada. A formalization of the

Berlekamp-Zassenhauss Factorization algorithm. Draft. 2016

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 22 /30

Transferring propositions in Isabelle/HOL Code generation

Code generation

Authors

Florian Haftmann

» The previous tools may be not enough to communicate any two
representations

» For instance, types may be unrelated (no Lifting possible)

» There is always the possibility of developing an ad hoc connection
between both representations by means of code lemmas

» This representation lives entirely in the logical level, but is completely
done “by hand”

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 23 /30

Code generation

Transferring propositions in Isabelle/HOL

Code generation

Examples
The connection between the raw type of abstract vectors (as the set of

every function with finite domain) and
» the type of every function with finite domain

» the type of immutable arrays
@ J. Aransay, J. Divasén. Formalisation in higher-order logic and code generation to
functional languages of the Gauss-Jordan algorithm. Journal of Functional Programming,

2015

11th October 2016 24 / 30

J. Aransay (UR) Isabelle/HOL transferring mechanisms

Transferring propositions in Isabelle/ Some use data and other works on Refinements

Some use data

@ P. Lammich. Collections Framework. Archive of Formal Proofs.
http://isa-afp.org/entries/Collections.shtml. 2008
Used by 14 AFP entries

@ P. Lammich. Refinement for Monadic Programs. Archive of Formal Proofs.
http://isa-afp.org/entries/Refine_Monadic.shtml. 2012
Used by 4 AFP entries

ﬁ P. Lammich. Automatic Data Refinement. Archive of Formal Proofs.
https://www.isa-afp.org/entries/Automatic_Refinement.shtml. 2013
Used by 11 AFP entries

@ P. Lammich. The Imperative Refinement Framework. Archive of Formal Proofs.
https://www.isa-afp.org/entries/Refine_Imperative_HOL.shtml. 2016
Used by 1 AFP entries

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 25 / 30

http://isa-afp.org/entries/Collections.shtml
http://isa-afp.org/entries/Refine_Monadic.shtml
https://www.isa-afp.org/entries/Automatic_Refinement.shtml
https://www.isa-afp.org/entries/Refine_Imperative_HOL.shtml

RICUBCTT AT IR M EET YA [O]M Some use data and other works on Refinements

Some use data

» Lifting and Transfer, its use is ubiquitous along the Isabellle/HOL
Library

» Code generation; its use is ubiquitous along the Isabellle/HOL Library

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 26 / 30

RICUBCTT AT IR M EET YA [O]M Some use data and other works on Refinements

Some other works on Refinements

[3
[3

D. Cock, G. Klein, and T. Sewell. Secure Microkernels, state monad and scalable
refinement. TPHOLs'08. pp. 167 — 182. 2008

T. Murray, R. Sison, E. Pierzchalski and Christine Rizkallah. Compositional
Security-Preserving Refinement for Concurrent Imperative Programs. Archive of Formal
Proofs. https://www.isa-afp.org/entries/Dependent _SIFUM_Refinement.shtml. 2016
Used by 0 AFP entries

V. Preoteasa. Formalization of Refinement Calculus for Reactive Systems. Archive of
Formal Proofs. https://wuw.isa-afp.org/entries/RefinementReactive.shtml. 2014
Used by 0 AFP entries

A. Coglio. Pop-Refinement. Archive of Formal Proofs.
https://www.isa-afp.org/entries/Pop_Refinement.shtml. 2014
Used by 0 AFP entries

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 27 / 30

https://www.isa-afp.org/entries/Dependent_SIFUM_Refinement.shtml
https://www.isa-afp.org/entries/RefinementReactive.shtml
https://www.isa-afp.org/entries/Pop_Refinement.shtml

RICUBCTT AT IR M EET YA [O]M Some use data and other works on Refinements

Some other works on Refinements

ﬁ A. Armstrong, V. B. F. Gomes and G. Struth. Kleene Algebra with Tests and Demonic
Refinement Algebras. Archive of Formal Proofs.
http://isa-afp.org/entries/KAT_and_DRA.shtml. 2014
Used by 1 AFP entries

@ V. Preoteasa and R-J. Back. Verification of the Deutsch-Schorr-Waite Graph Marking
Algorithm using Data Refinement. Archive of Formal Proofs.
http://isa-afp.org/entries/GraphMarkingIBP.shtml. 2010
Used by 0 AFP entries

@ V. Preoteasa and R-J. Back. Semantics and Data Refinement of Invariant Based
Programs. Archive of Formal Proofs.
http://isa-afp.org/entries/DataRefinementIBP.shtml. 2010
Used by 1 AFP entries

@ K. Zee and V. Kuncak. File Refinement. Archive of Formal Proofs.
http://isa-afp.org/entries/FileRefinement.shtml. 2004. Used by O AFP entries

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 28 / 30

http://isa-afp.org/entries/KAT_and_DRA.shtml
http://isa-afp.org/entries/GraphMarkingIBP.shtml
http://isa-afp.org/entries/DataRefinementIBP.shtml
http://isa-afp.org/entries/FileRefinement.shtml

Conclusions

Conclusions

v

Transferring proofs among different representations of data types is
relevant

v

Transferring proofs among different versions of algorithms is relevant

v

Particular solutions are developed to solve corner cases

v

Standard solutions and designs are offered and heavily used in the
Isabelle distribution (be sure not to reinvent the wheel!)

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 29 / 30

“?\ML&@M

J. Aransay (UR) Isabelle/HOL transferring mechanisms 11th October 2016 30/ 30

	Introduction
	Goal

	Transferring propositions in Isabelle/HOL
	Isabelle Refinement Framework
	Transfer and Lifting
	Types to sets
	Code generation
	Some use data and other works on Refinements

	Conclusions

