Spectral sequences for multidimensional persistence

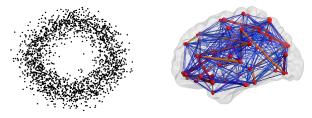
Andrea Guidolin

Politecnico di Torino - ISI Foundation

23 January 2017

Topological data analysis

Applications: image analysis, shape study, sensor networks, viral evolution and propagation of epidemics, internet and social networks, biological networks . . .

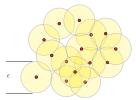


Topological methods:

- Transform data into global topological object (simplicial complexes)
- Study these objects through algebraic topology (persistent homology)

- \blacksquare data \rightarrow simplicial complexes \rightarrow filtrations \rightarrow topological invariants
- 2 Spectral sequences vs Persistent homology
 - "same topological information"
- 3 Multidimensional case

From data to simplicial complexes

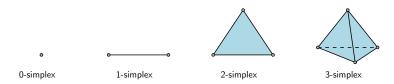


(a) Point cloud

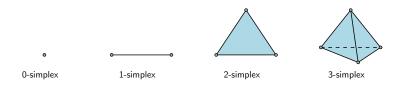
(b) Connections between points

(c) Simplicial complex (Rips)

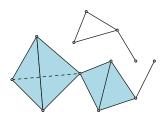
Simplices:

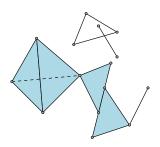


Simplices:

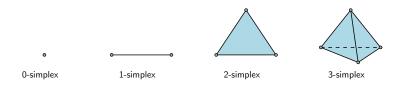


Simplicial complexes:

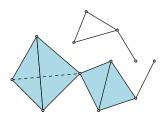


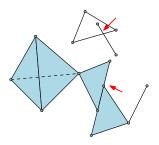


Simplices:

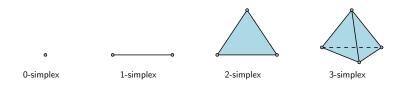


Simplicial complexes:

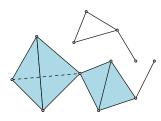


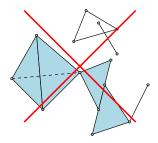


Simplices:



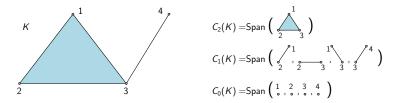
Simplicial complexes:





Homology: Chain complex of a simplicial complex

 $C_n(K) := \{ \text{linear combinations of } n \text{-simplices of } K \}$



Chain complex of *K*:

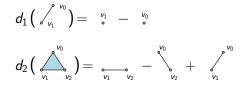
$$C_{ullet}(K): \quad \cdots \xrightarrow{d_3} C_2(K) \xrightarrow{d_2} C_1(K) \xrightarrow{d_1} C_0(K) o 0$$

Homology: Boundary operator

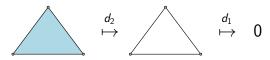
The boundary operator

$$d_n: C_n(K) \to C_{n-1}(K)$$

is the linear map defined on *n*-simplices as the alternating sum of (n-1)-faces:



Fundamental property: $d_n d_{n+1} = 0$



Andrea Guidolin

Homology groups and Betti numbers

Consider the chain complex of a simplicial complex K

$$C_{\bullet}(K): \longrightarrow C_{n+1}(K) \xrightarrow{d_{n+1}} C_n(K) \xrightarrow{d_n} C_{n-1}(K) \to \cdots$$

The fundamental property $d_n d_{n+1} = 0$ implies

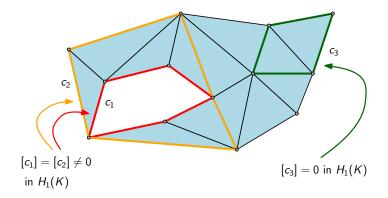
$$\operatorname{Im} d_{n+1} \subseteq \ker d_n \ (\subseteq C_n(K)).$$

The n-th homology group of K is defined as

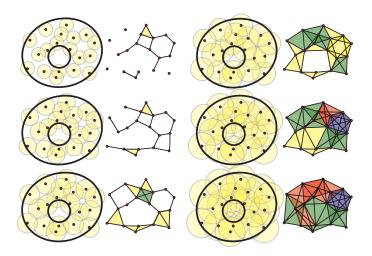
$$H_n(K) := rac{\ker d_n}{\operatorname{Im} d_{n+1}}$$

and its rank β_n is called *n*-th **Betti number**.

Homology classes



Filtration of simplicial complexes



Given a filtration of simplicial complexes

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_m = K,$$

for every $i \leq j$ the inclusion $K_i \subseteq K_j$ induces maps in homology

 $f_n^{i,j}: H_n(K_i) \to H_n(K_j).$

For every $i \leq j$, we call the groups

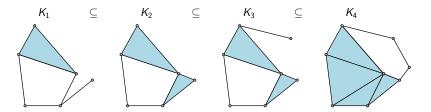
$$H_n^{i,j} := \operatorname{Im}(f_n^{i,j})$$

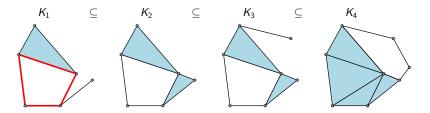
persistent homology groups. We define

$$\beta_n^{i,j} := \dim_k H_n^{i,j}$$

persistent Betti numbers.

Andrea Guidolin



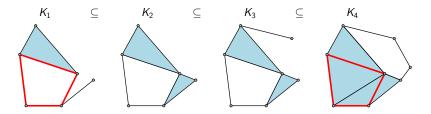


 $[z] \in H_1(K_1)$

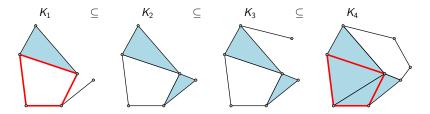


 $[z] \in H_1(K_1) \qquad \qquad [z] \in H_1(K_3)$

Persistent Betti numbers: $\beta_1^{1,3} = 1$



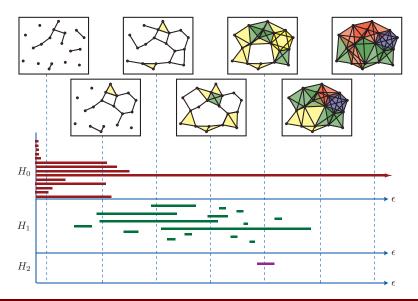
Persistent Betti numbers: $\beta_1^{1,3} = 1$, $\beta_1^{1,4} = 0$



Persistent Betti numbers: $\beta_1^{1,3} = 1$, $\beta_1^{1,4} = 0$, ...

Barcode for H_1 (counting "holes"):

Barcodes



Andrea Guidolin

- \blacksquare data \rightarrow simplicial complexes \rightarrow filtrations \rightarrow topological invariants
- 2 Spectral sequences vs Persistent homology
 - "same topological information"
- 3 Multidimensional case

Filtration of a simplicial complex:

$$\emptyset = K_0 \subseteq K_1 \subseteq \cdots \subseteq K_{p-1} \subseteq K_p \subseteq \cdots \subseteq K_m = K.$$

Filtration of a chain complex:

$$0 = F_0 \hookrightarrow F_1 \hookrightarrow \ldots \hookrightarrow F_{p-1} \hookrightarrow F_p \hookrightarrow \ldots \hookrightarrow F_m = C_{\bullet}(K),$$

where we denote $F_p := C_{\bullet}(K_p)$.

Leray (~ 1940): spectral sequences as a device for computing the homology $H_n(K)$ using the information contained in the filtration.

Spectral sequences

Filtration of a chain complex:

$$0 = F_0 \hookrightarrow F_1 \hookrightarrow \ldots \hookrightarrow F_{p-1} \hookrightarrow F_p \hookrightarrow \ldots \hookrightarrow F_m = C_{\bullet}(K)$$

Spectral sequence:

$$\{E_p^r\}_{p,r\in\mathbb{Z}}, r \text{ "page index"}, p \text{ "filtration index"},$$

where

$$E_p^1 := H(F_p/F_{p-1})$$

and there exist differentials

$$\cdots E_{p+r}^r \xrightarrow{d} E_p^r \xrightarrow{d'} E_{p-r}^r \cdots \quad \text{with} \ E_p^{r+1} \cong \ker d' / \operatorname{Im} d.$$

Convergence

There exists a filtration $0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_m = H(K)$ such that, for $r \geq r_0$,

$$E_p^r \cong V_p/V_{p-1}.$$

Spectral sequences

Filtration of a chain complex:

$$0 = F_0 \hookrightarrow F_1 \hookrightarrow \ldots \hookrightarrow F_{p-1} \hookrightarrow F_p \hookrightarrow \ldots \hookrightarrow F_m = C_{\bullet}(K)$$

Spectral sequence:

$$\{E_p^r\}_{p,r\in\mathbb{Z}}, r \text{ "page index"}, p \text{ "filtration index"},$$

where

$$E_p^1 := H(F_p/F_{p-1})$$

and there exist differentials

$$\cdots E_{p+r}^r \xrightarrow{d} E_p^r \xrightarrow{d'} E_{p-r}^r \cdots \quad \text{with} \ E_p^{r+1} \cong \ker d' / \operatorname{Im} d.$$

Convergence

There exists a filtration $0 = V_0 \subseteq V_1 \subseteq \cdots \subseteq V_m = H(K)$ such that, for $r \geq r_0$,

$$E_p^r \cong V_p/V_{p-1}.$$

Spectral sequences vs Persistent homology

Given a filtration

$$0 = F_0 \hookrightarrow F_1 \hookrightarrow \ldots \hookrightarrow F_{p-1} \hookrightarrow F_p \hookrightarrow \ldots \hookrightarrow F_m = C_{\bullet}(K)$$

study the relationship between the spectral sequence $\{E_p^r\}$ and the persistent homology groups $\{H^{i,j} = Im(H(F_i) \rightarrow H(F_j))\}$: there are long exact sequences

$$\cdots H^{p-1,p+r-2} \to H^{p,p+r-1} \to E_p^r \to H^{p-r,p-1} \to H^{p-r+1,p} \cdots$$

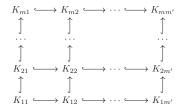
The spectral sequence and the persistent homology groups "contain the same topological information" :

$$\dim_k E_p^r \quad \iff \quad \beta^{i,j} := \dim_k H^{i,j}$$

- \blacksquare data \rightarrow simplicial complexes \rightarrow filtrations \rightarrow topological invariants
- 2 Spectral sequences vs Persistent homology
 - "same topological information"
- 3 Multidimensional case

Multidimensional persistent homology

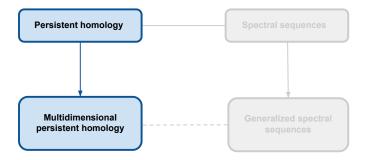
Multidimensional filtration of a simplicial complex:

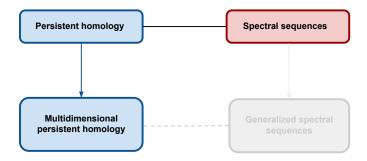


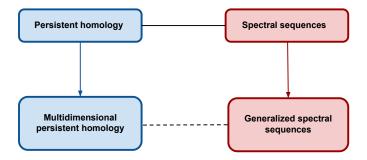
Associated invariant: rank invariant

 $\beta_n^{P,Q} := \dim_k \operatorname{Im}(H_n(K_P) \to H_n(K_Q)), \quad P, Q \in \mathbb{Z}^2, P \preceq Q.$

Unlike the 1-dimensional case (persistent Betti numbers), it is *not* a complete invariant.







Generalized spectral sequences

For a filtration $\{F_p\}_{p\in\mathbb{Z}}$ we have

$$E_{p}^{1} = H(F_{p}/F_{p-1}) = \frac{\text{rel. cycles}}{\text{rel. boundaries}} = \frac{F_{p} \cap d^{-1}(F_{p-1})}{d(F_{p}) + F_{p-1}}$$
$$E_{p}^{r} = \frac{F_{p} \cap d^{-1}(F_{p-r})}{d(F_{p+r-1}) + F_{p-1}}$$

This can be generalized for a **filtration indexed over a poset** *I*, i.e. a collection of chain complexes $\{F_i\}_{i \in I}$ with $F_i \hookrightarrow F_j \iff i \leq j$, in the following way:

$$S[z,q,p,b] := \frac{F_p \cap d^{-1}(F_z)}{d(F_b) + F_q},$$

for all $z \leq q \leq p \leq b$ in *I*.

Generalized spectral sequences

For a filtration $\{F_p\}_{p\in\mathbb{Z}}$ we have

$$E_{\rho}^{1} = H(F_{\rho}/F_{\rho-1}) = \frac{\text{rel. cycles}}{\text{rel. boundaries}} = \frac{F_{\rho} \cap d^{-1}(F_{\rho-1})}{d(F_{\rho}) + F_{\rho-1}}$$

$$E_{\rho}^{r} = \frac{F_{\rho} \cap d^{-1}(F_{\rho-r})}{d(F_{\rho+r-1}) + F_{\rho-1}}$$

This can be generalized for a **filtration indexed over a poset** *I*, i.e. a collection of chain complexes $\{F_i\}_{i \in I}$ with $F_i \hookrightarrow F_j \iff i \le j$, in the following way:

$$S[z,q,p,b] := \frac{F_p \cap d^{-1}(F_z)}{d(F_b) + F_q},$$

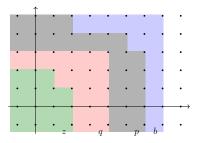
for all $z \leq q \leq p \leq b$ in *I*.

Consider the poset $I := D(\mathbb{Z}^n)$ of **downsets** of \mathbb{Z}^n , ordered wrt inclusion \subseteq . (A downset of \mathbb{Z}^n is a subset $A \subseteq \mathbb{Z}^n$ such that if $P \in A$ and $Q \preceq P$, then $Q \in A$).

The terms of the generalized spectral sequence are of the form

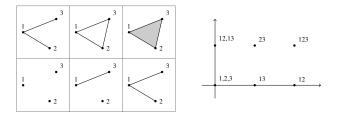
$$S[z,q,p,b] := rac{F_p \cap d^{-1}(F_z)}{d(F_b) + F_q},$$

for all $z \subseteq q \subseteq p \subseteq b$ in $I = D(\mathbb{Z}^n)$.



Andrea Guidolin

How to define a filtration of chain complexes $\{F_p\}_{p \in I = D(\mathbb{Z}^n)}$ from a multidimensional filtration of simplicial complexes $\{K_P\}_{P \in \mathbb{Z}^n}$.



For every point $P \in \mathbb{Z}^n$ consider the simplices entering the filtration at K_P . Then, for $p \in I = D(\mathbb{Z}^n)$, set

 $F_p := \text{Span}\{\text{simplices entering the filtration at } K_P, \text{ for all } P \in p\}$

Theorem

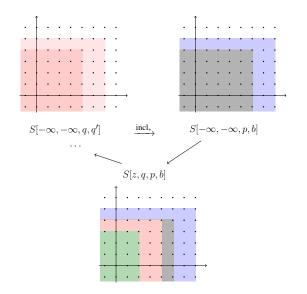
Under suitable hypotheses on $z_1, q_1, \ldots, b_3 \in I = D(\mathbb{Z}^n)$, there exist differentials

$$S[z_3, q_3, p_3, b_3] \xrightarrow{d} S[z_2, q_2, p_2, b_2] \xrightarrow{d'} S[z_1, q_1, p_1, b_1]$$

such that

$$\frac{\ker d'}{\operatorname{Im} d} \cong S[q_1, q_2, p_2, p_3].$$

Our idea: consider $\{\dim_k S[z, q, p, b]\}$ as invariant for the multidimensional filtration $\{K_P\}_{P \in \mathbb{Z}^n}$.



Andrea Guidolin

Short bibliography

R. Ghrist, Barcodes: the persistent topology of data (2008),

G. Carlsson, A. Zomorodian, *The theory of multidimensional persistence* (2007),

A. Romero, J. Heras, J. Rubio, F. Sergeraert, *Defining and computing persistent* Z-homology in the general case (2014),

S. Basu, L. Parida, Spectral sequences, exact couples and persistent homology of filtrations (2015),

B. Matschke, *Successive spectral sequences* (2013),

A. G., F. Vaccarino, *Multidimensional persistence and spectral sequences*, in preparation.