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Topological data analysis

Applications: image analysis, shape study, sensor networks, viral
evolution and propagation of epidemics, internet and social networks,
biological networks . . .

Topological methods:

Transform data into global topological object (simplicial
complexes)

Study these objects through algebraic topology (persistent
homology)
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Plan of the talk

1 Persistent homology

data → simplicial complexes → filtrations → topological
invariants

2 Spectral sequences vs Persistent homology

“same topological information”

3 Multidimensional case
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From data to simplicial complexes

(a) Point cloud

ε

(b) Connections between
points

Rε

(c) Simplicial
complex (Rips)
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Simplicial complexes

Simplices:

1-simplex 2-simplex 3-simplex0-simplex

Simplicial complexes:
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Homology: Chain complex of a simplicial complex

Cn(K ) := {linear combinations of n-simplices of K}

C2(K ) =Span

C1(K ) =Span

C0(K ) =Span

(

(

(

2 3

1

)

, , , )

1

2 3

4

K

2

1

2 3

1

3 3

4

, , , )1 2 3 4

Chain complex of K :

C•(K ) : · · · d3−→ C2(K )
d2−→ C1(K )

d1−→ C0(K ) −→ 0
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Homology: Boundary operator

The boundary operator

dn : Cn(K )→ Cn−1(K )

is the linear map defined on n-simplices as the alternating sum of
(n − 1)-faces:

(
v1 v2

v0

)d2 =
v1 v2 v2

v0

v1

v0

− +

( v1

v0

)d1 = v1 v0−

Fundamental property: dndn+1 = 0

7→ 7→ 0
d2 d1
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Homology groups and Betti numbers

Consider the chain complex of a simplicial complex K

C•(K ) : · · · → Cn+1(K )
dn+1−−→ Cn(K )

dn−→ Cn−1(K )→ · · ·

The fundamental property dndn+1 = 0 implies

Im dn+1 ⊆ ker dn (⊆ Cn(K )).

The n-th homology group of K is defined as

Hn(K ) :=
ker dn

Im dn+1

and its rank βn is called n-th Betti number.
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Homology classes

c1

c2

c3

[c1] = [c2] 6= 0

in H1(K )
[c3] = 0 in H1(K )
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Filtration of simplicial complexes
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Persistent homology

Given a filtration of simplicial complexes

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K ,

for every i ≤ j the inclusion Ki ⊆ Kj induces maps in homology

f i,jn : Hn(Ki )→ Hn(Kj).

For every i ≤ j , we call the groups

H i,j
n := Im(f i,jn )

persistent homology groups. We define

βi,j
n := dimk H

i,j
n

persistent Betti numbers.
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Persistent homology

K1 K2 K3 K4⊆ ⊆ ⊆

K1 K2 K3 K4⊆ ⊆ ⊆

[z ] ∈ H1(K1) [z ] = 0 ∈ H1(K4)

Persistent Betti numbers: β1,3
1 = 1, β1,4

1 = 0, . . .

Barcode for H1 (counting “holes”):
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Barcodes

H0

H1

H2

ε

ε

ε
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Plan of the talk

1 Persistent homology

data → simplicial complexes → filtrations → topological
invariants

2 Spectral sequences vs Persistent homology

“same topological information”

3 Multidimensional case
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Spectral sequences

Filtration of a simplicial complex:

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kp−1 ⊆ Kp ⊆ · · · ⊆ Km = K .

Filtration of a chain complex:

0 = F0 ↪−→ F1 ↪−→ . . . ↪−→ Fp−1 ↪−→ Fp ↪−→ . . . ↪−→ Fm = C•(K ),

where we denote Fp := C•(Kp).

Leray (∼ 1940): spectral sequences as a device for computing the
homology Hn(K ) using the information contained in the filtration.
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Spectral sequences

Filtration of a chain complex:

0 = F0 ↪−→ F1 ↪−→ . . . ↪−→ Fp−1 ↪−→ Fp ↪−→ . . . ↪−→ Fm = C•(K )

Spectral sequence:

{E r
p}p,r∈Z, r “page index”, p “filtration index”,

where
E 1
p := H(Fp/Fp−1)

and there exist differentials

· · ·E r
p+r

d−→ E r
p

d′
−→ E r

p−r · · · with E r+1
p
∼= ker d ′/ Im d .

Convergence

There exists a filtration 0 = V0 ⊆ V1 ⊆ · · · ⊆ Vm = H(K ) such that, for
r ≥ r0,

E r
p
∼= Vp/Vp−1.
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Spectral sequences vs Persistent homology

Given a filtration

0 = F0 ↪−→ F1 ↪−→ . . . ↪−→ Fp−1 ↪−→ Fp ↪−→ . . . ↪−→ Fm = C•(K )

study the relationship between the spectral sequence {E r
p} and the

persistent homology groups {H i,j = Im(H(Fi )→ H(Fj))}:
there are long exact sequences

· · ·Hp−1,p+r−2 −→ Hp,p+r−1 −→ E r
p −→ Hp−r ,p−1 −→ Hp−r+1,p · · ·

The spectral sequence and the persistent homology groups “contain the
same topological information” :

dimk E
r
p ! βi,j := dimk H

i,j
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Plan of the talk

1 Persistent homology

data → simplicial complexes → filtrations → topological
invariants

2 Spectral sequences vs Persistent homology

“same topological information”

3 Multidimensional case
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Multidimensional persistent homology

Multidimensional filtration of a simplicial complex:

As A
(−1)
p (r) = 0, it is clear from Proposition 2.8 that every persistent Betti

number can be computed from the dimensions dimk E
r
p,q, even if expressing the

relation in a non-recursive formula could be difficult. For example, while for
n = 1 we have

esplicitare
anche per
n = 2?βp,p+r−1

1 =

p∑

i=1

dimk E
p+r−i
i,1−i +

p−r∑

i=1

(
dimk E

p+1−i
i,−i − dimk E

p−i−� p−r−i
2 �

i,−i

)

for all p, r ≥ 1, for n = 2 a similar formula is already quite complicated.

3 Multidimensional persistence

Multidimensional filtrations. If we consider again the filtration (1.1) in
Section 1, here summarized as

K1 ↪−→ K2 ↪−→ · · · ↪−→ Km,

we see that it can be interpreted as a family of simplicial complexes which“grow”
with respect to a single parameter. However, in several applications a setting in
which simplicial complexes vary according to two or more parameters may be
more interesting. We represent a filtration along two dimensions with a diagram
of the following type, where every square commutes:

Km1 Km2 · · · Kmm′

· · · · · · · · ·

K21 K22 · · · K2m′

K11 K12 · · · K1m′

(3.1)

Here the filtration is finite, in accordance with the previous sections. Let’s
make this concept more rigorous. Let d be a positive integer; given v, w ∈ Zd,
with v = (v1, . . . , vd), w = (w1, . . . , wd), we denote v � w if vi ≤ wi, for every
i = 1, . . . , d. The relation � is a partial order on Zd. A collection of simplicial
complexes {Kv}v∈Zd such that Kw ⊆ Kw′ if w � w′ is called multifiltration or
Zd-filtration. A multifiltration {Kv}v∈Zd of simplicial complexes is finite if there
exists w ∈ Zd such that fixing d − 1 parameters except the i-th, the resulting

Z-filtration, here denoted {K̂(i)
p }p∈Z, is finite (in the sense of Section 1), with

∅ = . . . = K̂
(i)
−1 = K̂

(i)
0 ⊆ K̂

(i)
1 ⊆ . . . ⊆ K̂(i)

wi
= K̂

(i)
wi+1 = . . .

In simpler terms, if we summarize in a diagram only the simplicial complexes
Questa def è
mia ma mi
sembra quella
giusta per
filtraz FINITE
multidimens

which are possibly non-empty and possibly different from each other, we obtain
a diagram involving only the indices v such that (1, 1, . . . , 1) � v � w, as
suggested by the bifiltration (d = 2) in the diagram (3.1), where w = (m,m′).

9

Associated invariant: rank invariant

βP,Q
n := dimk Im(Hn(KP)→ Hn(KQ)), P,Q ∈ Z2,P � Q.

Unlike the 1-dimensional case (persistent Betti numbers), it is not a
complete invariant.
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Spectral sequences

Generalized spectral 
sequences

Persistent homology

Multidimensional 
persistent homology
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Generalized spectral sequences

For a filtration {Fp}p∈Z we have

E 1
p = H(Fp/Fp−1) =

rel. cycles

rel. boundaries
=

Fp ∩ d−1(Fp−1)

d(Fp) + Fp−1

E r
p =

Fp ∩ d−1(Fp−r )
d(Fp+r−1) + Fp−1

This can be generalized for a filtration indexed over a poset I , i.e. a
collection of chain complexes {Fi}i∈I with Fi ↪−→ Fj ⇐⇒ i ≤ j , in the
following way:

S [z , q, p, b] :=
Fp ∩ d−1(Fz)

d(Fb) + Fq
,

for all z ≤ q ≤ p ≤ b in I .
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Spectral sequences for multidim. persistent homology

Consider the poset I := D(Zn) of downsets of Zn, ordered wrt inclusion
⊆. (A downset of Zn is a subset A ⊆ Zn such that if P ∈ A and Q � P,
then Q ∈ A).
The terms of the generalized spectral sequence are of the form

S [z , q, p, b] :=
Fp ∩ d−1(Fz)

d(Fb) + Fq
,

for all z ⊆ q ⊆ p ⊆ b in I = D(Zn).

Spectral Sequences and Multidimensional Persistence
Andrea Guidolin, Francesco Vaccarino
Politecnico di Torino & ISI Foundation

Abstract
We apply the framework of “higher spectral sequences”, i.e. spectral se-

quences for Zd-filtrations of a chain complex, to the context of multidimen-
sional persistent homology, in order to investigate the relations with the rank
invariant.

Spectral Sequences and Persistence

Spectral sequences are algebraic tools that relate the homology H(C)
of a Z-filtered chain complex

0 ⊆ . . . ⊆ Fp−1 ⊆ Fp ⊆ Fp+1 ⊆ . . . ⊆ C

to the relative homologies H(Fp/Fp−1) of subsequent levels of the fil-
tration. In this setting, a spectral sequence is a collection of vector
spaces {Erp}r∈N+,p∈Z, with E1

p = H(Fp/Fp−1), such that there exists

a differential Erp+r
dr−→ Erp

dr−→ Erp−r with Er+1p = ker(dr)/ Im(dr).
An exact couple is an exact diagram

D1 D1

E1

incl∗
D1 := ⊕pD1

p

D1
p := H(Fp)

E1 := ⊕pE1
p

E1
p := H(Fp/Fp−1)

which is equivalent to the long exact sequences of relative homology:

· · · → Hn(Fp−1)→ Hn(Fp)→ Hn(Fp/Fp−1)→ Hn−1(Fp−1) · · ·

From the exact couple above one can compute the derived couples

Dr Dr

Er

incl∗ Dr := ⊕pDr
p

Dr
p := Im(H(Fp−r+1)→ H(Fp))

Er := ⊕pErp
which can be written as the long exact sequences:

· · · → Im(Hn(Fp−1)→ Hn(Fp+r−2))→ Im(Hn(Fp)→ Hn(Fp+r−1))→
→ Ern,p→ Im(Hn−1(Fp−r)→ Hn−1(Fp−1)) · · ·

Recalling the definition of the persistent Betti numbers,

b
p,s
n := dimk Im(Hn(Fp)→ Hn(Fs)),

the long exact sequence above yields the following relation between
spectral sequences and persistent Betti numbers, as shown in [1]:

dimkE
r
n,p = b

p,p+r−1
n − bp−1,p+r−1n + b

p−r,p−1
n−1 − bp−r,pn−1 . (1)

We would like to generalize this connection to filtrations with indexes
in Z2. The first step is to observe that, for classical spectral sequences,

E1
p = H(Fp/Fp−1) =

relative cycles
relative boundaries

=
Fp ∩ d−1(Fp−1)
d(Fp) + Fp−1

and

Erp =
Fp ∩ d−1(Fp−r)
d(Fp+r−1) + Fp−1

Main Tool: Higher Spectral Sequences
Higher spectral sequences, introduced in [2], are a generalization of
spectral sequences to the case of filtrations indexed over a poset I , i.e.
filtrations of the type

{Fi}i∈I filtration of (C, d), with Fi ⊆ Fj ⇐⇒ i ≤ j in the poset I .

In particular, we consider I = D(Z2), the lattice of downsets of Z2,
which is a poset wrt inclusion.
Definition. For z ≤ q ≤ p ≤ b ∈ I = D(Z2) we define a term of the
generalized spectral sequence as the vector space

S[z, q, p, b] :=
Fp ∩ d−1(Fz)
d(Fb) + Fq

z q p b

Proposition. (see [2]) Under suitable hypotheses on z1, q1, . . . ∈ I =
D(Z2), there exists a well-defined differential induced by d:

d : S[z2, q2, p2, b2]→ S[z1, q1, p1, b1].

Furthermore, if we consider a sequence

S[z3, q3, p3, b3]
d′−→ S[z2, q2, p2, b2]

d−→ S[z1, q1, p1, b1]

and take homology, we have

ker(d)

Im(d′)
= S[q1, q2, p2, p3].

Our Contribution: Application to Multidi-
mensional Persistence
Given a simplicial complex X and a bifiltration {XP ⊆ X}P∈N2, we
want to associate to it a filtration {Fp}p∈D(Z2) of chain complexes in-
dexed over downsets of Z2. To do so, for every P ∈ N2 we define
CP := Span{simplices entering the filtration at XP} and

Fp :=
∑

P∈p
CP (p downset of Z2).

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1,2,3 13

12,13 23

12

123

Example: a bifiltration of a triangle (left) and the simplices entering the filtration at
each P ∈ N2 (right).

In order to study the relation with the rank invariant, defined as

ρ(P, P ′) := dimk Im(H(XP )
incl∗−−−→ H(XP ′)), P ≤ P ′ ∈ N2,

we restrict ourselves to considering only the “rectangular” downsets
p ∈ D(Z2), of the type

P

p

for which clearly we have Fp = C(XP ) and thus H(Fp) = H(XP ).
Then the rank invariant is

ρ(P, P ′) := dimk Im(H(Fp)→ H(Fp′)) = dimk S[−∞,−∞, p, p′],

where p, p′ are the rectangular downsets of P, P ′ (conventionally
F−∞ = 0).
Proposition. There exists a generalization of the derived couples, of
the form

S[−∞,−∞, ∗, ∗] S[−∞,−∞, ∗, ∗]

S[∗, ∗, ∗, ∗]

incl∗

which yields a relation similar to (1) between the terms S[z, q, p, b] and
the rank invariant.

We can represent the situation graphically with an example (a portion
of a long exact sequence):

S[−∞,−∞, q, q′] S[−∞,−∞, p, b]incl∗−−−→

S[z, q, p, b]

· · ·

Similar results also hold in some situations where the downsets
z, q, p, b ∈ D(Z2) are not rectangular, for example:

This also suggests us to generalize the definition of the rank invariant
for every pair of downsets p, p′ ∈ D(Z2):

ρ(p, p′) := dimk Im(H(Fp)
incl∗−−−→ H(Fp′)).

Conclusions

•Higher spectral sequences are a generalization of classical spectral
sequences, and they are suitable for applications to the context of
multidimensional persistent homology.

•We propose a generalization of exact and derived couples, which
yields a relation between the rank invariant and the terms S[z, q, p, b]
of the generalized spectral sequence.

•Using a proper generalization of the rank invariant, and thinking in
terms of downsets of Z2, we can find more connections with the
generalized spectral sequences.

Forthcoming Research

All possible connections between generalized spectral sequences and
multidimensional persistence need to be better investigated. For in-
stance, we would like to characterize the “shape” of the downsets that
can be used for successive homology computations. We also want to
understand to what extent our construction of the derived couples can
be further generalized.
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Spectral sequences for multidim. persistent homology

How to define a filtration of chain complexes {Fp}p∈I=D(Zn) from a
multidimensional filtration of simplicial complexes {KP}P∈Zn .
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relative boundaries

=
Fp ∩ d−1(Fp−1)
d(Fp) + Fp−1

and

Erp =
Fp ∩ d−1(Fp−r)
d(Fp+r−1) + Fp−1

Main Tool: Higher Spectral Sequences
Higher spectral sequences, introduced in [2], are a generalization of
spectral sequences to the case of filtrations indexed over a poset I , i.e.
filtrations of the type

{Fi}i∈I filtration of (C, d), with Fi ⊆ Fj ⇐⇒ i ≤ j in the poset I .

In particular, we consider I = D(Z2), the lattice of downsets of Z2,
which is a poset wrt inclusion.
Definition. For z ≤ q ≤ p ≤ b ∈ I = D(Z2) we define a term of the
generalized spectral sequence as the vector space

S[z, q, p, b] :=
Fp ∩ d−1(Fz)
d(Fb) + Fq

z q p b

Proposition. (see [2]) Under suitable hypotheses on z1, q1, . . . ∈ I =
D(Z2), there exists a well-defined differential induced by d:

d : S[z2, q2, p2, b2]→ S[z1, q1, p1, b1].

Furthermore, if we consider a sequence

S[z3, q3, p3, b3]
d′−→ S[z2, q2, p2, b2]

d−→ S[z1, q1, p1, b1]

and take homology, we have

ker(d)

Im(d′)
= S[q1, q2, p2, p3].

Our Contribution: Application to Multidi-
mensional Persistence
Given a simplicial complex X and a bifiltration {XP ⊆ X}P∈N2, we
want to associate to it a filtration {Fp}p∈D(Z2) of chain complexes in-
dexed over downsets of Z2. To do so, for every P ∈ N2 we define
CP := Span{simplices entering the filtration at XP} and

Fp :=
∑

P∈p
CP (p downset of Z2).
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Example: a bifiltration of a triangle (left) and the simplices entering the filtration at
each P ∈ N2 (right).

In order to study the relation with the rank invariant, defined as

ρ(P, P ′) := dimk Im(H(XP )
incl∗−−−→ H(XP ′)), P ≤ P ′ ∈ N2,

we restrict ourselves to considering only the “rectangular” downsets
p ∈ D(Z2), of the type

P

p

for which clearly we have Fp = C(XP ) and thus H(Fp) = H(XP ).
Then the rank invariant is

ρ(P, P ′) := dimk Im(H(Fp)→ H(Fp′)) = dimk S[−∞,−∞, p, p′],

where p, p′ are the rectangular downsets of P, P ′ (conventionally
F−∞ = 0).
Proposition. There exists a generalization of the derived couples, of
the form

S[−∞,−∞, ∗, ∗] S[−∞,−∞, ∗, ∗]

S[∗, ∗, ∗, ∗]

incl∗

which yields a relation similar to (1) between the terms S[z, q, p, b] and
the rank invariant.

We can represent the situation graphically with an example (a portion
of a long exact sequence):

S[−∞,−∞, q, q′] S[−∞,−∞, p, b]incl∗−−−→

S[z, q, p, b]

· · ·

Similar results also hold in some situations where the downsets
z, q, p, b ∈ D(Z2) are not rectangular, for example:

This also suggests us to generalize the definition of the rank invariant
for every pair of downsets p, p′ ∈ D(Z2):

ρ(p, p′) := dimk Im(H(Fp)
incl∗−−−→ H(Fp′)).

Conclusions

•Higher spectral sequences are a generalization of classical spectral
sequences, and they are suitable for applications to the context of
multidimensional persistent homology.

•We propose a generalization of exact and derived couples, which
yields a relation between the rank invariant and the terms S[z, q, p, b]
of the generalized spectral sequence.

•Using a proper generalization of the rank invariant, and thinking in
terms of downsets of Z2, we can find more connections with the
generalized spectral sequences.

Forthcoming Research

All possible connections between generalized spectral sequences and
multidimensional persistence need to be better investigated. For in-
stance, we would like to characterize the “shape” of the downsets that
can be used for successive homology computations. We also want to
understand to what extent our construction of the derived couples can
be further generalized.
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KP . Then, for p ∈ I = D(Zn), set

Fp := Span{simplices entering the filtration at KP , for all P ∈ p}
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Theorem

Under suitable hypotheses on z1, q1, . . . , b3 ∈ I = D(Zn), there exist
differentials

S [z3, q3, p3, b3]
d−→ S [z2, q2, p2, b2]

d′
−→ S [z1, q1, p1, b1]

such that
ker d ′

Im d
∼= S [q1, q2, p2, p3].

Our idea: consider {dimk S [z , q, p, b]} as invariant for the
multidimensional filtration {KP}P∈Zn .
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Abstract
We apply the framework of “higher spectral sequences”, i.e. spectral se-

quences for Zd-filtrations of a chain complex, to the context of multidimen-
sional persistent homology, in order to investigate the relations with the rank
invariant.

Spectral Sequences and Persistence

Spectral sequences are algebraic tools that relate the homology H(C)
of a Z-filtered chain complex

0 ⊆ . . . ⊆ Fp−1 ⊆ Fp ⊆ Fp+1 ⊆ . . . ⊆ C

to the relative homologies H(Fp/Fp−1) of subsequent levels of the fil-
tration. In this setting, a spectral sequence is a collection of vector
spaces {Erp}r∈N+,p∈Z, with E1

p = H(Fp/Fp−1), such that there exists

a differential Erp+r
dr−→ Erp

dr−→ Erp−r with Er+1p = ker(dr)/ Im(dr).
An exact couple is an exact diagram

D1 D1

E1

incl∗
D1 := ⊕pD1

p

D1
p := H(Fp)

E1 := ⊕pE1
p

E1
p := H(Fp/Fp−1)

which is equivalent to the long exact sequences of relative homology:

· · · → Hn(Fp−1)→ Hn(Fp)→ Hn(Fp/Fp−1)→ Hn−1(Fp−1) · · ·

From the exact couple above one can compute the derived couples

Dr Dr

Er

incl∗ Dr := ⊕pDr
p

Dr
p := Im(H(Fp−r+1)→ H(Fp))

Er := ⊕pErp
which can be written as the long exact sequences:

· · · → Im(Hn(Fp−1)→ Hn(Fp+r−2))→ Im(Hn(Fp)→ Hn(Fp+r−1))→
→ Ern,p→ Im(Hn−1(Fp−r)→ Hn−1(Fp−1)) · · ·

Recalling the definition of the persistent Betti numbers,

b
p,s
n := dimk Im(Hn(Fp)→ Hn(Fs)),

the long exact sequence above yields the following relation between
spectral sequences and persistent Betti numbers, as shown in [1]:

dimkE
r
n,p = b

p,p+r−1
n − bp−1,p+r−1n + b

p−r,p−1
n−1 − bp−r,pn−1 . (1)

We would like to generalize this connection to filtrations with indexes
in Z2. The first step is to observe that, for classical spectral sequences,

E1
p = H(Fp/Fp−1) =

relative cycles
relative boundaries

=
Fp ∩ d−1(Fp−1)
d(Fp) + Fp−1

and

Erp =
Fp ∩ d−1(Fp−r)
d(Fp+r−1) + Fp−1

Main Tool: Higher Spectral Sequences
Higher spectral sequences, introduced in [2], are a generalization of
spectral sequences to the case of filtrations indexed over a poset I , i.e.
filtrations of the type

{Fi}i∈I filtration of (C, d), with Fi ⊆ Fj ⇐⇒ i ≤ j in the poset I .

In particular, we consider I = D(Z2), the lattice of downsets of Z2,
which is a poset wrt inclusion.
Definition. For z ≤ q ≤ p ≤ b ∈ I = D(Z2) we define a term of the
generalized spectral sequence as the vector space

S[z, q, p, b] :=
Fp ∩ d−1(Fz)
d(Fb) + Fq

z q p b

Proposition. (see [2]) Under suitable hypotheses on z1, q1, . . . ∈ I =
D(Z2), there exists a well-defined differential induced by d:

d : S[z2, q2, p2, b2]→ S[z1, q1, p1, b1].

Furthermore, if we consider a sequence

S[z3, q3, p3, b3]
d′−→ S[z2, q2, p2, b2]

d−→ S[z1, q1, p1, b1]

and take homology, we have

ker(d)

Im(d′)
= S[q1, q2, p2, p3].

Our Contribution: Application to Multidi-
mensional Persistence
Given a simplicial complex X and a bifiltration {XP ⊆ X}P∈N2, we
want to associate to it a filtration {Fp}p∈D(Z2) of chain complexes in-
dexed over downsets of Z2. To do so, for every P ∈ N2 we define
CP := Span{simplices entering the filtration at XP} and

Fp :=
∑

P∈p
CP (p downset of Z2).
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Example: a bifiltration of a triangle (left) and the simplices entering the filtration at
each P ∈ N2 (right).

In order to study the relation with the rank invariant, defined as

ρ(P, P ′) := dimk Im(H(XP )
incl∗−−−→ H(XP ′)), P ≤ P ′ ∈ N2,

we restrict ourselves to considering only the “rectangular” downsets
p ∈ D(Z2), of the type

P

p

for which clearly we have Fp = C(XP ) and thus H(Fp) = H(XP ).
Then the rank invariant is

ρ(P, P ′) := dimk Im(H(Fp)→ H(Fp′)) = dimk S[−∞,−∞, p, p′],

where p, p′ are the rectangular downsets of P, P ′ (conventionally
F−∞ = 0).
Proposition. There exists a generalization of the derived couples, of
the form

S[−∞,−∞, ∗, ∗] S[−∞,−∞, ∗, ∗]

S[∗, ∗, ∗, ∗]

incl∗

which yields a relation similar to (1) between the terms S[z, q, p, b] and
the rank invariant.

We can represent the situation graphically with an example (a portion
of a long exact sequence):

S[−∞,−∞, q, q′] S[−∞,−∞, p, b]incl∗−−−→

S[z, q, p, b]

· · ·

Similar results also hold in some situations where the downsets
z, q, p, b ∈ D(Z2) are not rectangular, for example:

This also suggests us to generalize the definition of the rank invariant
for every pair of downsets p, p′ ∈ D(Z2):

ρ(p, p′) := dimk Im(H(Fp)
incl∗−−−→ H(Fp′)).

Conclusions

•Higher spectral sequences are a generalization of classical spectral
sequences, and they are suitable for applications to the context of
multidimensional persistent homology.

•We propose a generalization of exact and derived couples, which
yields a relation between the rank invariant and the terms S[z, q, p, b]
of the generalized spectral sequence.

•Using a proper generalization of the rank invariant, and thinking in
terms of downsets of Z2, we can find more connections with the
generalized spectral sequences.

Forthcoming Research

All possible connections between generalized spectral sequences and
multidimensional persistence need to be better investigated. For in-
stance, we would like to characterize the “shape” of the downsets that
can be used for successive homology computations. We also want to
understand to what extent our construction of the derived couples can
be further generalized.
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