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René Thiemann (CL @ UIBK) Perron–Frobenius Theorem in Isabelle/HOL 2/28



Certifying Matrix Growth

Overview

Certifying Matrix Growth

Formalization of the Perron–Frobenius Theorem

Application: Certifying Complexity Proofs
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Certifying Matrix Growth

Matrix Growth

input: non-negative real matrix

A =

1 1 0
0 0 1
0 0 1


task: decide matrix growth

how large do values in An get for increasing n?
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Certifying Matrix Growth

Eigenvalues and eigenvectors

Matrix A has eigenvector v 6= 0 with eigenvalue λ if

Av = λv

Consequences

Anv = λnv

|Anv | = |λ|n|v |
if |λ| > 1 then An grows exponentially

Theorem

An grows polynomially if and only if
|λ| 6 1 for all eigenvalues λ of A

Remark

λ is eigenvalue of A if and only if
λ is root of characteristic polynomial χA
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Certifying Matrix Growth

Old certification algorithm for An ∈ O(nd)

Input: Matrix A and degree d
Output: Accept or assertion failure

1. Compute all eigenvalues λ1, . . . , λn of A
(all complex roots of χA)

2. Compute spectral radius ρA := maxi |λi |
3. Assert ρA 6 1
4. For each λi with |λi | = 1, and Jordan block of A and λi with

size si , assert si 6 d + 1
5. Accept
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Certifying Matrix Growth

Example of linear growth

Input: Matrix A and degree d
Output: Accept or assertion failure

1. Compute all eigenvalues λ1, . . . , λn of A
(all complex roots of χA)

2. Compute spectral radius ρA := maxi |λi |
3. Assert ρA 6 1
4. For each λi with |λi | = 1, and Jordan block of A and λi with

size si , assert si 6 d + 1
5. Accept

Input: A =

1 1 0
0 0 1
0 0 1

 , d = 1

1. λ1 = 1, λ2 = 0

2. ρA = 1

4. s1 − 1 = 2− 1 6 1 = d
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Certifying Matrix Growth

Another example

Input: A =
1

2


2 0 0 0
0 0 0 1
0 1 0 1
0 0 1 1


1. χA =

(x − 1) (8x3 − 4x2 − 2x − 1)

8
λ1 = 1

λ2 = (root #1 of f1)

λ3 = (root #1 of f2) + (root #1 of f3)i

λ4 = (root #1 of f2) + (root #2 of f3)i

f1 = 8x3 − 4x2 − 2x − 1

f2 = 32x3 − 16x2 + 1

f3 = 1024x6 + 512x4 + 64x2 − 11
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Certifying Matrix Growth

The problem and its solution

old algorithm requires precise calculations (|λi | = 1)

precise calculations with algebraic numbers are expensive

aim: avoid explicit computation of eigenvalues

solution: apply the Perron–Frobenius theorem
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Certifying Matrix Growth

Perron–Frobenius, Part 1

Theorem (Perron–Frobenius)

Let A be a non-negative real matrix

ρA is an eigenvalue of A

Consequence
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Certifying Matrix Growth

Perron–Frobenius, Part 2

Theorem (Perron–Frobenius)

Let A be a non-negative real and irreducible matrix

ρA is an eigenvalue of A

ρA has multiplicity 1

ρA is only eigenvalue with non-negative real eigenvector

∃f k. χA = f · (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

. . .
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Certifying Matrix Growth

Perron–Frobenius, Part 3

Theorem

Let A be a non-negative real matrix

ρA is an eigenvalue of A

∃f K . χA = f ·
∏

k∈K (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

Consequence
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Certifying Matrix Growth

Uniqueness of f and K

Theorem

Let A be a non-negative real matrix

ρA is an eigenvalue of A

∃!f K . χA = f ·
∏

k∈K (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

decompose χA computes f and K for ρA = 1

Consequence
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Certifying Matrix Growth

New certification algorithm for An ∈ O(nd)

Input: non-negative real matrix A and degree d

Output: Accept or assertion failure.

1. Assert that χA has no real roots in (1,∞) via Sturm’s method

2. Compute K via decompose χA

3. For each k ∈ {1, . . . ,maxK} do

mk := |{k ′ ∈ K . k divides k ′}|
If mk > d + 1 then check Jordan blocks for all primitive roots
of unity of degree k , i.e., assert Jordan block size 6 d + 1

4. Accept
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Certifying Matrix Growth

Experiments

large examples (dim A = 21)

old: timeouts after 1 hour

new: finished in fraction of second

matrices of termination competitions 2015–2017 (2 6 dim A 6 5)

new algorithm 5x faster
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Formalization of the Perron–Frobenius Theorem

Part of Paper Proof

Definitions

X := {x ∈ Rn | x ≥ 0, x 6= 0}
X1 := {x ∈ X | ||x || = 1}
Y := {(A + I )nx | x ∈ X1}

r(x) := min
j ,xj 6=0

(Ax)j
xj

rmax := max {r(y) | y ∈ Y }

Lemmas

X1 and Y are compact

r is continuous on Y

rmax is well-defined (extreme value theorem)

rmax = ρA
χ′
A(ρA) =

∑
i χBi

(ρA) > 0 where Bi = mat-delete A i i
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Formalization of the Perron–Frobenius Theorem

Overview on Formalization

HMA: Type-based vectors and matrices (ι :: finite→ α)

JNF: Carrier-based vectors and matrices (N× (N→ α))

HMA library JNF library

compatible dimensions type-system explicit carrier
arithmetic, determinants, . . . 3 3

continuity, compactness, . . . 3

block-matrices, delete row, . . . 3

formalization of Perron–Frobenius requires all features

=⇒ develop connection between both worlds: HMA connect
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Formalization of the Perron–Frobenius Theorem

Overview of Formalization

Perron–Frobenius
formalization

libraries HMA and JNF

Part 1
ρA is eigenvalue

Brouwer’s fixpoint theorem

Part 2
more thms for irred. A

extreme value theorem

derivative of χA
HMA connect

Part 3
more thms for arbitr. A

HMA connect

block decomposition
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Formalization of the Perron–Frobenius Theorem

HMA Connect

main aim: establish connection between JNF and HMA

tool: transfer

define correspondence-relation between vectors, matrices, . . .

HMAvec :: N× (N→ γ)→ (α→ γ)→ bool

HMAvec v w = (v = (CARD(α), λi .wfrom-nat i ))

where from-nat is some bijection between
α and {0, . . . ,CARD(α)− 1} ⊆ N
prove transfer rules between constants of JNF and HMA

(HMAmat −−−→ HMAmat −−−→ HMAmat) op + op +

(HMAmat −−−→ op =) det det

finally transfer complex statements between JNF and HMA

René Thiemann (CL @ UIBK) Perron–Frobenius Theorem in Isabelle/HOL 20/28



Formalization of the Perron–Frobenius Theorem

Transferring Theorems from JNF to HMA

JNF lemma for derivative of characteristic polynomial

A ∈ carrier-mat n n −→
pderiv (charpoly A) =

∑
i<n charpoly (mat-delete A i i)

transfer to HMA not yet possible: mat-delete not available

solution: reformulate lemma

A ∈ carrier-mat n n −→ monom 1 1 ∗
pderiv (charpoly A) =

∑
i<n charpoly (mat-erase A i i)

transfer to HMA

monom 1 1 ∗ pderiv (charpoly A) =∑
i charpoly (mat-erase A i i)
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Formalization of the Perron–Frobenius Theorem

Transferring Theorems from HMA to JNF

Perron–Frobenius Theorem Part 1 (HMA)

real-non-neg-mat A −→ eigenvalue A (spectral-radius A)

transfer to JNF

A ∈ carrier-mat (CARD(α)) (CARD(α)) −→
real-non-neg-mat A −→ eigenvalue A (spectral-radius A)

post-processing with local type definition

A ∈ carrier-mat n n −→ n 6= 0 −→
real-non-neg-mat A −→ eigenvalue A (spectral-radius A)
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Application: Certifying Complexity Proofs

Complexity of Term Rewrite Systems

sort(Cons(x , xs))→ insort(x , sort(xs))

sort(Nil)→ Nil

insort(x ,Cons(y , ys))→ Cons(x ,Cons(y , ys)) | x 6 y

insort(x ,Cons(y , ys))→ Cons(y , insort(x , ys)) | x 66 y

insort(x ,Nil)→ Cons(x ,Nil)

Aim: bound on maximal number of rewrite steps starting from

sort(Cons(x1, . . .Cons(xn,Nil)))
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Application: Certifying Complexity Proofs

Running automated complexity tool

Running TCT on TRS yields O(n2) + certificate

[[sort]](xs) =

3 3 0
0 0 1
0 0 1

 · [[xs]]

[[insort]](x , xs) =

1 1 2
0 0 1
0 0 1

 · [[xs]] +

2
1
2


[[Cons]](x , xs) =

1 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

A

· [[xs]] +

0
1
2



[[Nil]] =

1
0
2
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Application: Certifying Complexity Proofs

Certification of complexity proofs

check strict decrease in every rewrite step

bound initial interpretation

[[sort(Cons(x1, . . .Cons(xn,Nil)))]] =3 3 0
0 0 1
0 0 1

An

1
0
2

 +
∑
i<n

Ai

0
1
2

 ∈ O(n · An)

=⇒ key analysis: growth of values of An depending on n

René Thiemann (CL @ UIBK) Perron–Frobenius Theorem in Isabelle/HOL 26/28



Application: Certifying Complexity Proofs

Further Application: Irreducible Markov chains

Let Aij encode some probabilities to go from state j to state i

A =

0.3 0.8 0.2
0.6 0.0 0.4
0.1 0.2 0.4


Question: is there stationary distribution: ∃v . v ≥ 0 ∧ Av = v

Consequence of Perron–Frobenius
if A is irreducible then stationary distribution is unique
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Summary

Summary

formalization of Perron–Frobenius theorem

HMA connect: combine HMA- and JNF-libraries
based on transfer + local type definitions

our application: efficient certifier for complexity proofs

future application: finite irreducible Markov chains

AFP 2016: only part 1 of Perron–Frobenius theorem

AFP 2017: parts 1–3 formalized

www.isa-afp.org/entries/Perron_Frobenius.html
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