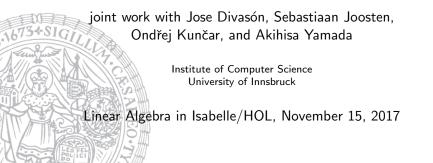


The Perron–Frobenius Theorem in Isabelle/HOL Transferring between Matrix-Representations

René Thiemann



• Certifying Matrix Growth

• Formalization of the Perron-Frobenius Theorem

• Application: Certifying Complexity Proofs

• Certifying Matrix Growth

• Formalization of the Perron–Frobenius Theorem

• Application: Certifying Complexity Proofs

Matrix Growth

• input: non-negative real matrix

$$A = egin{pmatrix} 1 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 1 \end{pmatrix}$$

• task: decide matrix growth

how large do values in A^n get for increasing n?

Eigenvalues and eigenvectors

Matrix A has eigenvector $v \neq 0$ with eigenvalue λ if

 $Av = \lambda v$

Consequences

• $A^n v = \lambda^n v$

•
$$|A^n v| = |\lambda|^n |v|$$

• if $|\lambda| > 1$ then A^n grows exponentially

Theorem

 A^n grows polynomially if and only if

 $|\lambda|\leqslant 1$ for all eigenvalues λ of A

Remark

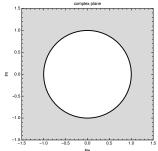
- λ is eigenvalue of A if and only if
 - λ is root of characteristic polynomial $\chi_{\rm A}$

Old certification algorithm for $A^n \in \mathcal{O}(n^d)$

Input: Matrix *A* and degree *d* Output: Accept or assertion failure

- Compute all eigenvalues λ₁,..., λ_n of A (all complex roots of χ_A)
- 2. Compute spectral radius $\rho_A := \max_i |\lambda_i|$
- 3. Assert $\rho_A \leqslant 1$
- 4. For each λ_i with $|\lambda_i| = 1$, and Jordan block of A and λ_i with size s_i , assert $s_i \leq d+1$

5. Accept



Example of linear growth

Input: Matrix *A* and degree *d* Output: Accept or assertion failure

- Compute all eigenvalues λ₁,..., λ_n of A (all complex roots of χ_A)
- 2. Compute spectral radius $\rho_A := \max_i |\lambda_i|$
- 3. Assert $\rho_A \leqslant 1$
- 4. For each λ_i with $|\lambda_i| = 1$, and Jordan block of A and λ_i with size s_i , assert $s_i \leq d + 1$
- 5. Accept

Input:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}, d = 1$$

1. $\lambda_1 = 1, \lambda_2 = 0$
2. $\rho_A = 1$
4. $s_1 - 1 = 2 - 1 \leqslant 1 = d$

Another example

Input:
$$A = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

1. $\chi_A = \frac{(x-1)(8x^3 - 4x^2 - 2x - 1)}{8}$
 $\lambda_1 = 1$
 $\lambda_2 = (\text{root } \#1 \text{ of } f_1)$
 $\lambda_3 = (\text{root } \#1 \text{ of } f_2) + (\text{root } \#1 \text{ of } f_3)\text{i}$
 $\lambda_4 = (\text{root } \#1 \text{ of } f_2) + (\text{root } \#2 \text{ of } f_3)\text{i}$
 $f_1 = 8x^3 - 4x^2 - 2x - 1$
 $f_2 = 32x^3 - 16x^2 + 1$
 $f_3 = 1024x^6 + 512x^4 + 64x^2 - 11$

The problem and its solution

- old algorithm requires precise calculations $(|\lambda_i| = 1)$
- precise calculations with algebraic numbers are expensive
- aim: avoid explicit computation of eigenvalues
- solution: apply the Perron–Frobenius theorem

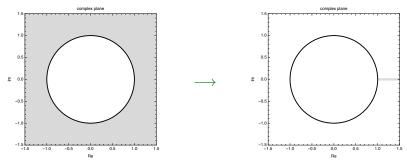
Perron–Frobenius, Part 1

Theorem (Perron–Frobenius)

Let A be a non-negative real matrix

• ρ_A is an eigenvalue of A

Consequence



Perron-Frobenius, Part 2

Theorem (Perron–Frobenius)

Let A be a non-negative real and irreducible matrix

- ρ_A is an eigenvalue of A
- *ρ_A* has multiplicity 1
- ρ_A is only eigenvalue with non-negative real eigenvector

• $\exists f k. \ \chi_A = f \cdot (x^k - \rho_A^k) \land (f(y) = 0 \longrightarrow |y| < \rho_A)$

• . . .

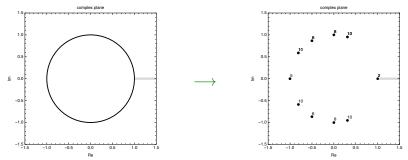
Perron-Frobenius, Part 3

Theorem

Let A be a non-negative real matrix

- ρ_A is an eigenvalue of A
- $\exists f K. \ \chi_A = f \cdot \prod_{k \in K} (x^k \rho_A^k) \land (f(y) = 0 \longrightarrow |y| < \rho_A)$

Consequence



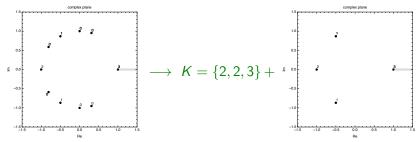
Uniqueness of f and K

Theorem

Let A be a non-negative real matrix

- ρ_A is an eigenvalue of A
- $\exists ! f K. \ \chi_A = f \cdot \prod_{k \in K} (x^k \rho_A^k) \land (f(y) = 0 \longrightarrow |y| < \rho_A)$
- decompose χ_A computes f and K for $\rho_A = 1$

Consequence



New certification algorithm for $A^n \in \mathcal{O}(n^d)$

Input: non-negative real matrix A and degree dOutput: Accept or assertion failure.

- 1. Assert that $\chi_{\mathcal{A}}$ has no real roots in $(1,\infty)$ via Sturm's method
- 2. Compute K via decompose χ_A
- 3. For each $k \in \{1, \ldots, \max K\}$ do
 - $m_k := |\{k' \in K. \ k \text{ divides } k'\}|$
 - If m_k > d + 1 then check Jordan blocks for all primitive roots of unity of degree k, i.e., assert Jordan block size ≤ d + 1

4. Accept

Experiments

- large examples (dim A = 21)
 - old: timeouts after 1 hour
 - new: finished in fraction of second

matrices of termination competitions 2015–2017 ($2 \leq dim A \leq 5$)

• new algorithm 5x faster

• Certifying Matrix Growth

• Formalization of the Perron-Frobenius Theorem

• Application: Certifying Complexity Proofs

Part of Paper Proof

Definitions

$$X := \{x \in \mathbb{R}^{n} \mid x \ge 0, x \ne 0\}$$
$$X_{1} := \{x \in X \mid ||x|| = 1\}$$
$$Y := \{(A + I)^{n}x \mid x \in X_{1}\}$$
$$r(x) := \min_{j, x_{j} \ne 0} \frac{(Ax)_{j}}{x_{j}}$$
$$r_{max} := \max\{r(y) \mid y \in Y\}$$

Lemmas

- X_1 and Y are compact
- r is continuous on Y
- *r_{max}* is well-defined (extreme value theorem)
- $r_{max} = \rho_A$

•
$$\chi'_A(\rho_A) = \sum_i \chi_{B_i}(\rho_A) > 0$$
 where B_i = mat-delete $A \ i \ i$

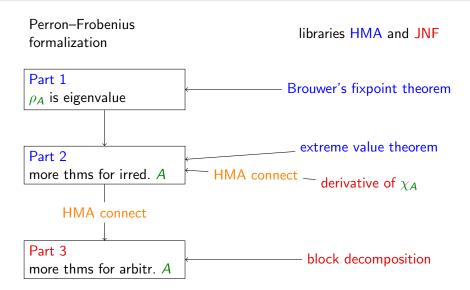
Overview on Formalization

- HMA: Type-based vectors and matrices (ι :: finite $\rightarrow \alpha$)
- JNF: Carrier-based vectors and matrices $(\mathbb{N} \times (\mathbb{N} \to \alpha))$

	HMA library	JNF library
compatible dimensions	type-system	explicit carrier
arithmetic, determinants,	1	 Image: A second s
continuity, compactness,	1	
block-matrices, delete row,		 Image: A second s

- formalization of Perron-Frobenius requires all features
- \implies develop connection between both worlds: HMA connect

Overview of Formalization



HMA Connect

- main aim: establish connection between JNF and HMA
- tool: transfer
 - define correspondence-relation between vectors, matrices, ...

 $HMA_{vec} :: \mathbb{N} \times (\mathbb{N} \to \gamma) \to (\alpha \to \gamma) \to \text{bool}$ $HMA_{vec} \ v \ w = (v = (CARD(\alpha), \lambda i.w_{\text{from-nat}} i))$

where from-nat is some bijection between α and $\{0, \ldots, \mathsf{CARD}(\alpha) - 1\} \subseteq \mathbb{N}$

prove transfer rules between constants of JNF and HMA

 $(HMA_{mat} \longrightarrow HMA_{mat} \longrightarrow HMA_{mat}) op + op + (HMA_{mat} \longrightarrow op =) det det$

• finally transfer complex statements between JNF and HMA

Transferring Theorems from JNF to HMA

• JNF lemma for derivative of characteristic polynomial

 $A \in \text{carrier-mat } n n \longrightarrow$ pderiv (charpoly A) = $\sum_{i < n}$ charpoly (mat-delete A i i)

- transfer to HMA not yet possible: mat-delete not available
- solution: reformulate lemma

 $A \in \text{carrier-mat } n \text{ } n \longrightarrow \text{monom } 1 \text{ } 1 *$ pderiv (charpoly A) = $\sum_{i < n}$ charpoly (mat-erase A i i)

transfer to HMA

monom 1 1 * pderiv (charpoly A) = \sum_{i} charpoly (mat-erase A i i)

Transferring Theorems from HMA to JNF

• Perron-Frobenius Theorem Part 1 (HMA)

real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)

• transfer to JNF

 $A \in \operatorname{carrier-mat} (\operatorname{CARD}(\alpha)) (\operatorname{CARD}(\alpha)) \longrightarrow$ real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)

post-processing with local type definition

 $A \in \text{carrier-mat } n \ n \longrightarrow n \neq 0 \longrightarrow$ real-non-neg-mat $A \longrightarrow$ eigenvalue A (spectral-radius A)

Overview

• Certifying Matrix Growth

• Formalization of the Perron–Frobenius Theorem

• Application: Certifying Complexity Proofs

Complexity of Term Rewrite Systems

$$\begin{aligned} \operatorname{sort}(\operatorname{Cons}(x, xs)) &\to \operatorname{insort}(x, \operatorname{sort}(xs)) \\ \operatorname{sort}(\operatorname{Nil}) &\to \operatorname{Nil} \\ \operatorname{insort}(x, \operatorname{Cons}(y, ys)) &\to \operatorname{Cons}(x, \operatorname{Cons}(y, ys)) & | x \leqslant y \\ \operatorname{insort}(x, \operatorname{Cons}(y, ys)) &\to \operatorname{Cons}(y, \operatorname{insort}(x, ys)) & | x \notin y \\ \operatorname{insort}(x, \operatorname{Nil}) &\to \operatorname{Cons}(x, \operatorname{Nil}) \end{aligned}$$

Aim: bound on maximal number of rewrite steps starting from

 $sort(Cons(x_1, \dots Cons(x_n, Nil)))$

Running automated complexity tool

Running TCT on TRS yields $O(n^2)$ + certificate

$$\llbracket \text{sort} \rrbracket (xs) = \begin{pmatrix} 3 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \llbracket xs \rrbracket$$
$$\llbracket \text{insort} \rrbracket (x, xs) = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \llbracket xs \rrbracket + \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$$
$$\llbracket \text{Cons} \rrbracket (x, xs) = \underbrace{\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}}_{A} \cdot \llbracket xs \rrbracket + \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$
$$\llbracket \text{Nil} \rrbracket = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

Certification of complexity proofs

- check strict decrease in every rewrite step
- bound initial interpretation

$$[\operatorname{sort}(\operatorname{Cons}(x_1, \dots, \operatorname{Cons}(x_n, \operatorname{Nil})))]] = \begin{pmatrix} 3 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} A^n \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + \sum_{i < n} A^i \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} \end{pmatrix} \in \mathcal{O}(n \cdot A^n)$$

 \implies key analysis: growth of values of A^n depending on n

Further Application: Irreducible Markov chains

• Let A_{ij} encode some probabilities to go from state j to state i

$$A = \begin{pmatrix} 0.3 & 0.8 & 0.2 \\ 0.6 & 0.0 & 0.4 \\ 0.1 & 0.2 & 0.4 \end{pmatrix}$$

- Question: is there stationary distribution: $\exists v. v \ge 0 \land Av = v$
- Consequence of Perron–Frobenius if *A* is irreducible then stationary distribution is unique

Summary

- formalization of Perron–Frobenius theorem
- HMA connect: combine HMA- and JNF-libraries based on transfer + local type definitions
- our application: efficient certifier for complexity proofs
- future application: finite irreducible Markov chains
- AFP 2016: only part 1 of Perron-Frobenius theorem
- AFP 2017: parts 1-3 formalized

www.isa-afp.org/entries/Perron_Frobenius.html