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o Certifying Matrix Growth
@ Formalization of the Perron—Frobenius Theorem

@ Application: Certifying Complexity Proofs
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Certifying Matrix Growth

Overview

o Certifying Matrix Growth
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Certifying Matrix Growth

@ input: non-negative real matrix

A=

O O =
O O =
=)

o task: decide matrix growth

how large do values in A” get for increasing n?
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Certifying Matrix Growth

Eigenvalues and eigenvectors

Matrix A has eigenvector v # 0 with eigenvalue X if

Av = \v
Consequences
o Av = \"v
o [A"v| = |A"]v]

e if |\| > 1 then A” grows exponentially

A" grows polynomially if and only if
[A| < 1 for all eigenvalues A of A

Remark

@ )\ is eigenvalue of A if and only if
A is root of characteristic polynomial x4
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Old certification algorithm for A" € O(n9)

Input: Matrix A and degree d
Output: Accept or assertion failure
1. Compute all eigenvalues \1,...,\, of A
(all complex roots of )
2. Compute spectral radius pa := max; |\
3. Assert pp <1
4. For each \; with |\;| =1, and Jordan block of A and Ai with
size s;, assert s; < d + 1 o =
5. Accept

05
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Certifying Matrix Growth

Example of linear growth

Input: Matrix A and degree d
Output: Accept or assertion failure
1. Compute all eigenvalues \1,...,\, of A
(all complex roots of )
2. Compute spectral radius pa := max; |\
3. Assert pp < 1
4. For each \; with |\;| = 1, and Jordan block of A and A; with
size s;, assert 5; < d+1
5. Accept

2.pa=1
4.51—1:2—1<1:d
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Certifying Matrix Growth

Another example

2 000
110 0 01
Input.A—§ 010 1
0 011
(x —1)(8x3 —4x% —2x — 1)
- XA =
8
A =1

A2 = (root #1 of f1)

A3 = (root #1 of ) + (root #1 of )i
Mg = (root #1 of f) + (root #2 of )i
f=8x3—4x>—2x—1

fr =32x3 —16x> + 1

f; = 1024x° + 512x* + 64x% — 11
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Certifying Matrix Growth

The problem and its solution

@ old algorithm requires precise calculations (|A\;| = 1)
@ precise calculations with algebraic numbers are expensive
@ aim: avoid explicit computation of eigenvalues

@ solution: apply the Perron—Frobenius theorem
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Certifying Matrix Growth

Perron—Frobenius, Part 1

Theorem (Perron—Frobenius)

Let A be a non-negative real matrix

@ pp is an eigenvalue of A

Consequence

‘complex plane complex plane
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Certifying Matrix Growth

Perron—Frobenius, Part 2

Theorem (Perron—Frobenius)

Let A be a non-negative real and irreducible matrix
@ pp Is an eigenvalue of A
@ pa has multiplicity 1
@ pa is only eigenvalue with non-negative real eigenvector
o Ifk. xa="f (x—pl)A(f(y) =0 — |y| < pa)
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Certifying Matrix Growth

Perron—Frobenius, Part 3

Let A be a non-negative real matrix

@ pp is an eigenvalue of A
o I K. xa=f[Tkex(x* = ph) A (f(y) =0 — |yl < pa)

‘complex plane: ccomplex plane
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Certifying Matrix Growth

Uniqueness of f and K

Let A be a non-negative real matrix

@ pp is an eigenvalue of A

o K. xa=fTlex(< = P5) A (F(y) = 0 — y| < pa)
@ decompose ya computes f and K for pp = 1
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New certification algorithm for A” € O(n9)

Input: non-negative real matrix A and degree d
Output: Accept or assertion failure.
1. Assert that x4 has no real roots in (1,00) via Sturm’s method
2. Compute K via decompose x
3. Foreach k € {1,..., maxK} do
o my = |{k' € K. k divides k'}|

o If mg > d + 1 then check Jordan blocks for all primitive roots
of unity of degree k, i.e., assert Jordan block size < d +1

4. Accept
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Certifying Matrix Growth

large examples (dim A = 21)
@ old: timeouts after 1 hour

@ new: finished in fraction of second

matrices of termination competitions 2015-2017 (2 < dim A < 5)

@ new algorithm 5x faster
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Formalization of the Perron—Frobenius Theorem

Overview

@ Formalization of the Perron—Frobenius Theorem
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Formalization of the Perron—Frobenius Theorem

Part of Paper Proof

Definitions
X :={xeR"|x>0,x#0}
X1 :={xeX||x| =1}
Y ={(A+1)"x | x e Xq}
Ax):
r(x) ;== min (Ax);
J70 X
I'max = Max {r(y) ‘ y e Y}
Lemmas

@ X7 and Y are compact

@ r is continuous on Y

® rmax is well-defined (extreme value theorem)

@ I'max = PA

Xa(pa) = > xB.(pa) > 0 where B; = mat-delete A/ i
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Formalization of the Perron—Frobenius Theorem

Overview on Formalization

e HMA: Type-based vectors and matrices (¢ :: finite — «)

e JNF: Carrier-based vectors and matrices (N x (N — «))

HMA library  JNF library

compatible dimensions type-system  explicit carrier
arithmetic, determinants, ... v v
continuity, compactness, ... v

block-matrices, delete row, ... v

o formalization of Perron—Frobenius requires all features

— develop connection between both worlds: HMA connect
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Formalization of the Perron—Frobenius Theorem

Overview of Formalization

Perron—Frobenius
formalization

libraries HMA and JNF

Part 1
pa is eigenvalue

Brouwer's fixpoint theorem

extreme value theorem

Part 2
more thms for irred. A

.

HMA connect

™ HMA connect — , . ..
derivative of x4

Part 3
more thms for arbitr. A

block decomposition
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Formalization of the Perron—Frobenius Theorem

HMA Connect

@ main aim: establish connection between JNF and HMA
@ tool: transfer
o define correspondence-relation between vectors, matrices, ...

HMA ec : N x (N = 7) = (a = 7) — bool
HMA ec v w = (v = (CARD(a), i Weom nat 1))
where from-nat is some bijection between
a and {0,...,CARD(a) — 1} CN

e prove transfer rules between constants of JNF and HMA

(HMA 2t —— HMA ;e —— HMA,,2) op + op +
(HMA .0 — op =) det det

e finally transfer complex statements between JNF and HMA
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Formalization of the Perron—Frobenius Theorem

Transferring Theorems from JNF to HMA

o JNF lemma for derivative of characteristic polynomial

A € carrier-mat n n —
pderiv (charpoly A) = »._, charpoly (mat-delete A i i)
@ transfer to HMA not yet possible: mat-delete not available
@ solution: reformulate lemma
A € carrier-mat n n — monom 1 1 x
pderiv (charpoly A) = >"._ charpoly (mat-erase A i i)

@ transfer to HMA

i<n

monom 1 1 « pderiv (charpoly A) =
> charpoly (mat-erase A i i)
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Formalization of the Perron—Frobenius Theorem

Transferring Theorems from HMA to JNF

@ Perron—Frobenius Theorem Part 1 (HMA)

real-non-neg-mat A — eigenvalue A (spectral-radius A)

@ transfer to JNF

A € carrier-mat (CARD(«)) (CARD(a)) —

real-non-neg-mat A — eigenvalue A (spectral-radius A)

@ post-processing with local type definition

A € carrier-mat nn — n#0 —

real-non-neg-mat A — eigenvalue A (spectral-radius A)
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Application: Certifying Complexity Proofs

Overview

@ Application: Certifying Complexity Proofs
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Application: Certifying Complexity Proofs

Complexity of Term Rewrite Systems

sort(Cons(x, xs)) — insort(x, sort(xs))
sort(Ni

)

[) — Nil
insort(x, Cons(y, ys)

)

— Cons(x, Cons(y, ys)) | x <y

)
)
)
)

insort(x, Cons(y, ys)) — Cons(y, insort(x, ys)) | x Ly

insort(x, Nil) — Cons(x, Nil)

Aim: bound on maximal number of rewrite steps starting from

sort(Cons(xi, . .. Cons(xp, Nil)))
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Application: Certifying Complexity Proofs

Running automated complexity tool

Running TCT on TRS yields O(n?) + certificate

[sort](xs) =

[insort](x, xs) =

[Cons](x, xs) =

3
0
0
1
0
0
1
0
0

3
0
0
1
0
0
1
0
0

A

_H R, O R RN R EEO

- [xs]
2
Ixs]+ | 1
2
0
Jxs]+ | 1
2
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Application: Certifying Complexity Proofs

Certification of complexity proofs

@ check strict decrease in every rewrite step

@ bound initial interpretation

[sort(Cons(xq, . .. Cons(x,, Nil)))] =

3 30 1 [0
00 1| [A |0 +> A1 e O(n- A"
00 1 2] icn \2

= key analysis: growth of values of A" depending on n
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Application: Certifying Complexity Proofs

Further Application: Irreducible Markov chains

@ Let Aj; encode some probabilities to go from state j to state /

0.3 0.8 0.2
A=106 0.0 04
0.1 0.2 0.4

@ Question: is there stationary distribution: dv.v > 0A Av = v

@ Consequence of Perron—Frobenius
if A is irreducible then stationary distribution is unique
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Summary

formalization of Perron—Frobenius theorem

HMA connect: combine HMA- and JNF-libraries
based on transfer + local type definitions

our application: efficient certifier for complexity proofs
future application: finite irreducible Markov chains
AFP 2016: only part 1 of Perron—Frobenius theorem
AFP 2017: parts 1-3 formalized

www.isa-afp.org/entries/Perron_Frobenius.html
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