Recent development in Lean and its analysis

Johannes Hölzl (Matryoshka @ VU Amsterdam)

Linear Algebra in Isabelle/HOL Universidad de La Rioja

Lean and its analysis

Not about Isabelle's linear algebra, but about Lean.

- ▶ interesting concepts / syntax / tools / ...
- some of these would fit for Isabelle
- thinking outside the boundary of HOL
- convince people to use Lean!

Outline

- What is Lean
 - Lean Architecture
 - Dependent Types (Uniform Syntax)
 - Some Syntactic Sugar
- Library
 - ► Topology: Uniform spaces and Reals
 - Summation operator
 - Measure theory
 - Recently: cardinals

What is Lean

Lean architecture

User Interface (e.g. VS Code or Emacs)

Elaborator

- syntax sugar
- type inference + classes
- equation compiler

VM

- execute metaexpressions
- tactics

Kernel

- expressions + type checker
- declarations
- inductive + quotient types

Types are terms!

▶ \mathbb{N} : Type₀

- ▶ N : Type₀
- ► Type_u: Type_{u+1} HOL happens in Type₀

- ▶ N : Type₀
- ► Type_u: Type_{u+1} HOL happens in Type₀
- $\alpha: \mathsf{Type}_u \implies \mathsf{list} \ \alpha: \mathsf{Type}_u$, i.e. $\mathsf{list}: \mathsf{Type}_u \to \mathsf{Type}_u$

- ▶ N : Type₀
- ► Type_u : Type_{u+1} HOL happens in Type₀
- $\alpha: \mathsf{Type}_u \implies \mathsf{list} \ \alpha: \mathsf{Type}_u$, i.e. $\mathsf{list}: \mathsf{Type}_u \to \mathsf{Type}_u$
- $\operatorname{vec}: \operatorname{Type}_u \to \mathbb{N} \to \operatorname{Type}_u$

- ▶ \mathbb{N} : Type₀
- ► Type_u : Type_{u+1} HOL happens in Type₀
- $\alpha: \mathsf{Type}_u \implies \mathsf{list} \ \alpha: \mathsf{Type}_u$, i.e. $\mathsf{list}: \mathsf{Type}_u \to \mathsf{Type}_u$
- $\operatorname{vec}: \operatorname{Type}_u \to \mathbb{N} \to \operatorname{Type}_u$
- Also: types can be empty!

- ▶ Prop : Type₀
 - type universe of propositions (i.e. \simeq bool)

- ▶ Prop : Type $_0$ type universe of propositions (i.e. \simeq bool)
- ▶ true, false, . . . : Prop
 - propositions are types

- ▶ Prop : Type $_0$ type universe of propositions (i.e. \simeq bool)
- true, false, ...: Proppropositions are types
- ▶ trueI : true
 - proofs are the elements of propositions

- ▶ Prop : Type $_0$ type universe of propositions (i.e. \simeq bool)
- true, false, ...: Proppropositions are types
- trueI : trueproofs are the elements of propositions
- proofs are the elements of propositions
- ► false is empty!
 - $\forall \alpha, \mathtt{false} \rightarrow \alpha$

Dependent Types in Lean

Lean is now:

- a little bit of outer syntax
- dependent type language + (a lot of) syntactic sugar
- one language to express: terms, types, proofs

```
 \frac{\text{def double (a : } \mathbb{Z}) : \mathbb{Z} := }{\text{a + a}}
```

```
lemma double_0 : double 0 = 0 :=
add_zero 0
```

Ex: recursion for types, fun, & proofs

Ex: recursion for types, fun, & proofs

Ex: recursion for types, fun, & proofs

```
-- Type 'vec'
def vec (\alpha : Type) : \mathbb{N} \to \text{Type}
| (n + 1) := \alpha \times \text{vec n}
-- Function 'map'
def map (\alpha \ \beta : \text{Type}) \ (f : \alpha \rightarrow \beta) :
  \Pi (n : \mathbb{N}), vec \alpha n \rightarrow vec \beta n
| \ 0 \ () \ := ()
| (n + 1) (a, v) := (f a, map n v)
-- Theorem 'map id'
lemma map id (\alpha : Type) :
  \forall (n : \mathbb{N}) (v : vec \alpha n), map \alpha \alpha id n v = v
\mid 0 \quad () \quad := rfl
(n + 1) (a, v) := by simp [map, map id n v]
```

Nice case analysis for proofs

Equation compiler allows a precise case analysis:

```
lemma ex : \foralli (s : set \mathbb{N}),

(\existsn\ins, f n = i) \vee s = \emptyset \rightarrow P i s

| _ s (or.inl \langlen, hns, rfl\rangle) :=

show P (f n) s, from sorry

| i _ (or.inr rfl) :=

show P i \emptyset, from sorry
```

```
\langle 0, () \rangle : \Sigma n, \text{ vec } \mathbb{Z} n,
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

Anonymous constructor:

```
\langle 0, () \rangle : \sum n, \text{ vec } \mathbb{Z} \text{ n},
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

Special "dot"-syntax: xs.map f where

Anonymous constructor:

```
\langle 0, () \rangle : \Sigma n, \text{ vec } \mathbb{Z} n,
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

Special "dot"-syntax: xs.map f where

```
ightharpoonup xs : list lpha
```

```
\langle 0, () \rangle : \Sigma n, \text{ vec } \mathbb{Z} n,
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

- Special "dot"-syntax: xs.map f where
 - ightharpoonup xs : list α
 - ▶ list.map : $(\alpha \rightarrow \beta)$ → list α → list β

```
\langle 0, () \rangle : \Sigma n, \text{ vec } \mathbb{Z} n,
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

- Special "dot"-syntax: xs.map f where
 - \triangleright xs : list α
 - ▶ list.map : $(\alpha \rightarrow \beta)$ → list α → list β
 - Result: list.map f xs

```
\langle 0, () \rangle : \Sigma n, \text{ vec } \mathbb{Z} n,
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

- Special "dot"-syntax: xs.map f where
 - \triangleright xs : list α
 - ▶ list.map : $(\alpha \to \beta) \to \text{list } \alpha \to \text{list } \beta$
 - Result: list.map f xs
 - ▶ Replaces map_ < type >, set_ < type >, ...

```
\langle 0, () \rangle : \Sigma n, \text{ vec } \mathbb{Z} n,
\langle 2, \text{ by simp} \rangle : \exists n, n = 1 + 1
```

- Special "dot"-syntax: xs.map f where
 - \triangleright xs : list α
 - ▶ list.map : $(\alpha \to \beta) \to \text{list } \alpha \to \text{list } \beta$
 - Result: list.map f xs
 - ▶ Replaces map_ < type >, set_ < type >, ...
- ► Haskell \$: $f \ a \ g \ b \ h \ x$ instead of $f \ a \ (g \ b \ (h \ x))$

Library

Basic algebraic and order hierarchy

Lean follows mostly Isabelles algebraic and order hierarchy

- (partial) orders, (complete) lattices, . . .
- (commutative) semigroups, monoids, groups, rings, and finally fields
- Start separating type classes containing constants and pure predicates.
 This makes also a difference in Isabelle

```
class module (\alpha : \texttt{inout} \ \texttt{Type} \ \texttt{u}) \ (\beta : \texttt{Type} \ \texttt{v}) \ [\texttt{inout} \ \texttt{ring} \ \alpha] \\ \texttt{extends} \ \texttt{has\_scalar} \ \alpha \ \beta \text{, add\_comm\_group} \ \beta := \\ \dots
```

► Filter library

- Filter library
- Hierarchy follows Isabelle

- Filter library
- Hierarchy follows Isabelle
- Continuity is unbounded: continuous f

- Filter library
- Hierarchy follows Isabelle
- Continuity is unbounded: continuous f
- Operations on the structure itself: complete_lattice(topological_space α) \Rightarrow constructions (nearly) for free

lacksquare Uniform completion of $\mathbb Q$

- ▶ Uniform completion of ℚ
- Uniform spaces generalize metric spaces, but do not require \mathbb{R} Rely heavily on filters

- ▶ Uniform completion of ℚ
- Uniform spaces generalize metric spaces, but do not require \mathbb{R} Rely heavily on filters
- ▶ Hope: do uniform completion generally and instantiate for ℝ
 Did not work out, still requires a lot of work

- ▶ Uniform completion of Q
- Uniform spaces generalize metric spaces, but do not require \mathbb{R} Rely heavily on filters
- ▶ Hope: do uniform completion generally and instantiate for ℝ
 Did not work out, still requires a lot of work
- Finally: metric and order complete field

Measure theory

Finally the freedom to do them right!

```
class measurable_space (\alpha : Type u) := ...

class measure_space
(\alpha : Type u) [measurable_space \alpha] :=
(measure_of : \Pis, is_measurable s \rightarrow ennreal)
...
```

- with complete lattice structure, map, comap, ...
- currently up to the Lebesgue measure

 $\bullet \ \alpha \simeq \beta := \exists f : \alpha \to \beta, f \text{ bijective}$

- $\bullet \ \alpha \simeq \beta := \exists f : \alpha \to \beta, f \text{ bijective}$
- ightharpoonup \simeq is an equivalence relation on types!

- $\bullet \ \alpha \simeq \beta := \exists f : \alpha \to \beta, f \text{ bijective}$
- $ightharpoonup \simeq$ is an equivalence relation on types!
- lacktriangledown cardinals $_u$: Type $_{u+1}$:= Type $_{u/\simeq}$

- $\bullet \ \alpha \simeq \beta := \exists f : \alpha \to \beta, f \text{ bijective}$
- $ightharpoonup \simeq$ is an equivalence relation on types!
- lacktriangledown cardinals $_u$: Type $_{u+1}$:= Type $_{u/\simeq}$
- ightharpoonup unbounded cardinals: closed under ${\cal P}$

- $\bullet \ \alpha \simeq \beta := \exists f : \alpha \to \beta, f \text{ bijective}$
- $ightharpoonup \simeq$ is an equivalence relation on types!
- lacktriangledown cardinals $_u$: Type $_{u+1}$:= Type $_{u/\simeq}$
- lacktriangle unbounded cardinals: closed under ${\cal P}$
- semiring and total order (no wellorder yet)

- $\bullet \ \alpha \simeq \beta := \exists f : \alpha \to \beta, f \text{ bijective}$
- $ightharpoonup \simeq$ is an equivalence relation on types!
- lacktriangledown cardinals $_u$: Type $_{u+1}$:= Type $_{u/\simeq}$
- lacktriangle unbounded cardinals: closed under ${\cal P}$
- semiring and total order (no wellorder yet)
- Example application: should allow most BNF constructions

Conclusion

type constructions are everywhere in DTT

Conclusion

- type constructions are everywhere in DTT
- some constructions can be also done in Isabelle

Conclusion

- type constructions are everywhere in DTT
- some constructions can be also done in Isabelle
- **>** ...

Thanks for listening