Recent development in Lean and its analysis

Johannes Hölzl
(Matryoshka @ VU Amsterdam)

Linear Algebra in Isabelle/HOL Universidad de La Rioja

Lean and its analysis

Not about Isabelle's linear algebra, but about Lean.

- interesting concepts / syntax / tools / ...
- some of these would fit for Isabelle
- thinking outside the boundary of HOL
- convince people to use Lean!

Outline

- What is Lean
- Lean Architecture
- Dependent Types (Uniform Syntax)
- Some Syntactic Sugar
- ...
- Library
- Topology: Uniform spaces and Reals
- Summation operator
- Measure theory
- Recently: cardinals

What is Lean

Lean architecture

User Interface (e.g. VS Code or Emacs)
Elaborator

- syntax sugar
- type inference + classes
- equation compiler

VM

- execute metaexpressions
- tactics

Kernel

- expressions + type checker
- declarations
- inductive + quotient types

Dependent Types extend HOL

Types are terms!

- $\mathbb{N}:$ Type $_{0}$

Dependent Types extend HOL

Types are terms!

- $\mathbb{N}:$ Type $_{0}$
- Type ${ }_{u}:$ Type $_{u+1}$

HOL happens in Type $_{0}$

Dependent Types extend HOL

Types are terms!

- $\mathbb{N}:$ Type $_{0}$
- Type $_{u}:$ Type $_{u+1}$

HOL happens in Type $_{0}$

- $\alpha:$ Type $_{u} \Longrightarrow$ list $\alpha:$ Type $_{u}$,
i.e. list: Type $_{u} \rightarrow$ Type $_{u}$

Dependent Types extend HOL

Types are terms!

- $\mathbb{N}:$ Type $_{0}$
- Type ${ }_{u}:$ Type $_{u+1}$

HOL happens in Type $_{0}$
$-\alpha:$ Type $_{u} \Longrightarrow$ list $\alpha:$ Type $_{u}$,
i.e. list: Type $_{u} \rightarrow$ Type $_{u}$

- vec: Type $_{u} \rightarrow \mathbb{N} \rightarrow$ Type $_{u}$

Dependent Types extend HOL

Types are terms!

- $\mathbb{N}:$ Type $_{0}$
- Type ${ }_{u}:$ Type $_{u+1}$

HOL happens in Type $_{0}$

- $\alpha:$ Type $_{u} \Longrightarrow$ list $\alpha:$ Type $_{u}$,
i.e. list: Type $_{u} \rightarrow$ Type $_{u}$
- vec: Type $_{u} \rightarrow \mathbb{N} \rightarrow$ Type $_{u}$
- Also: types can be empty!

Dependent Types extend HOL

Proofs are terms!

- Prop: Type ${ }_{0}$
- type universe of propositions (i.e. \simeq bool)

Dependent Types extend HOL

Proofs are terms!

- Prop : Type ${ }_{0}$
- type universe of propositions (i.e. \simeq bool)
- true, false, ... : Prop
- propositions are types

Dependent Types extend HOL

Proofs are terms!

- Prop: Type ${ }_{0}$
— type universe of propositions (i.e. \simeq bool)
- true, false, ... : Prop
- propositions are types
- trueI : true
- proofs are the elements of propositions

Dependent Types extend HOL

Proofs are terms!

- Prop: Type 0
- type universe of propositions (i.e. \simeq bool)
- true, false, ... : Prop
- propositions are types
- trueI : true
- proofs are the elements of propositions
- false is empty!
$-\forall \alpha$, false $\rightarrow \alpha$

Dependent Types in Lean

Lean is now:

- a little bit of outer syntax
- dependent type language + (a lot of) syntactic sugar
- one language to express: terms, types, proofs def double (a : \mathbb{Z}) : $\mathbb{Z}:=$ $a+a$
lemma double_0 : double $0=0$:= add_zero 0

Ex: recursion for types, fun, \& proofs

$$
\begin{aligned}
& \text {-- Type 'vec' } \\
& \text { def vec (} \alpha: \text { Type) }: \mathbb{N} \rightarrow \text { Type } \\
& \mid 0 \quad:=\text { unit } \\
& \mid(\mathrm{n}+1):=\alpha \times \text { vec } \mathrm{n}
\end{aligned}
$$

Ex: recursion for types, fun, \& proofs

```
-- Type 'vec'
def rec ( \(\alpha\) : Type) : \(\mathbb{N} \rightarrow\) Type
| \(0 \quad:=\) unit
\(\mid(\mathrm{n}+1):=\alpha \times\) eec n
-- Function 'map'
def map \((\alpha \beta:\) Type) \((\mathrm{f}: \alpha \rightarrow \beta\) ) :
    \(\Pi(\mathrm{n}: \mathbb{N})\), vec \(\alpha \mathrm{n} \rightarrow \operatorname{vec} \beta \mathrm{n}\)
\(\mid 0 \quad\) () \(0=\) ()
| ( \(\mathrm{n}+1\) ) (a, v) \(:=(\mathrm{f} a, \operatorname{map} \mathrm{n} v)\)
```


Ex: recursion for types, fun, \& proofs

-- Type 'vec'
def rec ($\alpha:$ Type) : $\mathbb{N} \rightarrow$ Type
| $0 \quad:=$ unit
$\mid(\mathrm{n}+1):=\alpha \times$ vec n
-- Function 'map'
def map $(\alpha \beta:$ Type) $(\mathrm{f}: \alpha \rightarrow \beta)$:
$\Pi(\mathrm{n}: \mathbb{N}), \operatorname{vec} \alpha \mathrm{n} \rightarrow \operatorname{vec} \beta \mathrm{n}$
$10 \quad$ () 0 ()
| ($\mathrm{n}+1$) (a, v) $:=(\mathrm{f} a, \operatorname{map} \mathrm{n} v)$
-- Theorem 'map_id'
lemma map_id (α : Type) :
$\forall(\mathrm{n}: \mathbb{N})(\mathrm{v}: \operatorname{vec} \alpha \mathrm{n}), \operatorname{map} \alpha \alpha$ id $\mathrm{n} \mathrm{v}=\mathrm{v}$
$10 \quad$ () $0=r f 1$
| ($\mathrm{n}+1$) (a, v) := by simp [map, map_id $\mathrm{n} v$]

Nice case analysis for proofs

Equation compiler allows a precise case analysis:
lemma ex : $\forall i(s: s e t \mathbb{N})$,
$(\exists \mathrm{n} \in \mathrm{s}, \mathrm{f} \mathrm{n}=\mathrm{i}) \vee \mathrm{s}=\emptyset \rightarrow \mathrm{P}$ i s
| _ s (or.inl $\langle\mathrm{n}, \mathrm{hns}, \mathrm{rfl}\rangle$) :=
show P (f n) s, from sorry
| i _ (or.inr nfl) :=
show Pi \emptyset, from sorry

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp $\rangle: \exists \mathrm{n}, \mathrm{n}=1+1$

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp $\rangle: \exists \mathrm{n}, \mathrm{n}=1+1$
- Special "dot"-syntax: xs.map f where

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp $\rangle: \exists \mathrm{n}, \mathrm{n}=1+1$
- Special "dot"-syntax: xs.map f where
- xs : list α

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp〉: $\exists \mathrm{n}, \mathrm{n}=1+1$
- Special "dot"-syntax: xs.map f where
- xs : list α
- list.map : $(\alpha \rightarrow \beta) \rightarrow$ list $\alpha \rightarrow$ list β

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp〉: $\exists \mathrm{n}, \mathrm{n}=1+1$
- Special "dot"-syntax: xs.map f where
- xs : list α
- list.map $:(\alpha \rightarrow \beta) \rightarrow$ list $\alpha \rightarrow$ list β
- Result: list.map f xs

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp〉: $\exists \mathrm{n}, \mathrm{n}=1+1$
- Special "dot"-syntax: xs.map f where
- xs : list α
- list.map $:(\alpha \rightarrow \beta) \rightarrow$ list $\alpha \rightarrow$ list β
- Result: list.map f xs
- Replaces map_ < type $>$, set_<type $>, \ldots$

Some syntactic sugar

- Anonymous constructor:
$\langle 0,()\rangle: \Sigma n$, vec $\mathbb{Z} n$,
$\langle 2$, by simp〉: $\exists \mathrm{n}, \mathrm{n}=1+1$
- Special "dot"-syntax: xs.map f where
- xs : list α
- list.map $:(\alpha \rightarrow \beta) \rightarrow$ list $\alpha \rightarrow$ list β
- Result: list.map f xs
- Replaces map_ < type $>$, set_<type $>, \ldots$
- Haskell \$:
$f a \$ g b \$ h x$ instead of $f a(g b(h x))$

Library

Basic algebraic and order hierarchy

Lean follows mostly Isabelles algebraic and order hierarchy

- (partial) orders, (complete) lattices, ...
- (commutative) semigroups, monoids, groups, rings, and finally fields
- Start separating type classes containing constants and pure predicates. This makes also a difference in Isabelle
class module
(α : inout Type u) (β : Type v) [inout ring α]
extends has_scalar $\alpha \beta$, add_comm_group β :=

Topology

- Filter library

Topology

- Filter library
- Hierarchy follows Isabelle

Topology

- Filter library
- Hierarchy follows Isabelle
- Continuity is unbounded: continuous f

Topology

- Filter library
- Hierarchy follows Isabelle
- Continuity is unbounded: continuous f
- Operations on the structure itself:
complete_lattice(topological_space α) \Rightarrow constructions (nearly) for free

Reals

- Uniform completion of \mathbb{Q}

Reals

- Uniform completion of \mathbb{Q}
- Uniform spaces generalize metric spaces, but do not require \mathbb{R} Rely heavily on filters

Reals

- Uniform completion of \mathbb{Q}
- Uniform spaces generalize metric spaces, but do not require \mathbb{R} Rely heavily on filters
- Hope: do uniform completion generally and instantiate for \mathbb{R}
Did not work out, still requires a lot of work

Reals

- Uniform completion of \mathbb{Q}
- Uniform spaces generalize metric spaces, but do not require \mathbb{R} Rely heavily on filters
- Hope: do uniform completion generally and instantiate for \mathbb{R}
Did not work out, still requires a lot of work
- Finally: metric and order complete field

Measure theory

Finally the freedom to do them right!

```
class measurable_space ( }\alpha\mathrm{ : Type u) := ...
class measure_space
    ( }\alpha\mathrm{ : Type u) [measurable_space }\alpha\mathrm{ ] :=
(measure_of : Пs, is_measurable s }->\mathrm{ ennreal)
```

- with complete lattice structure, map, comap, ...
- currently up to the Lebesgue measure

Cardinals

- $\alpha \simeq \beta:=\exists f: \alpha \rightarrow \beta, f$ bijective

Cardinals

- $\alpha \simeq \beta:=\exists f: \alpha \rightarrow \beta, f$ bijective
- \simeq is an equivalence relation on types!

Cardinals

- $\alpha \simeq \beta:=\exists f: \alpha \rightarrow \beta, f$ bijective
$-\simeq$ is an equivalence relation on types!
- cardinals ${ }_{u}: \operatorname{Type}_{u+1}:=\operatorname{Type}_{u / \simeq}$

Cardinals

- $\alpha \simeq \beta:=\exists f: \alpha \rightarrow \beta, f$ bijective
- \simeq is an equivalence relation on types!
- cardinals ${ }_{u}:$ Type $_{u+1}:=$ Type $_{u} / \simeq$
- unbounded cardinals: closed under \mathcal{P}

Cardinals

- $\alpha \simeq \beta:=\exists f: \alpha \rightarrow \beta, f$ bijective
- \simeq is an equivalence relation on types!
- cardinals ${ }_{u}:$ Type $_{u+1}:=$ Type $_{u / \simeq}$
- unbounded cardinals: closed under \mathcal{P}
- semiring and total order (no wellorder yet)

Cardinals

- $\alpha \simeq \beta:=\exists f: \alpha \rightarrow \beta, f$ bijective
$-\simeq$ is an equivalence relation on types!
- cardinals ${ }_{u}: \operatorname{Type}_{u+1}:=\operatorname{Type}_{u / \simeq}$
- unbounded cardinals: closed under \mathcal{P}
- semiring and total order (no wellorder yet)
- Example application: should allow most BNF constructions

Conclusion

- type constructions are everywhere in DTT

Conclusion

- type constructions are everywhere in DTT
- some constructions can be also done in Isabelle

Conclusion

- type constructions are everywhere in DTT
- some constructions can be also done in Isabelle

Thanks for listening

