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Lean and its analysis

Not about Isabelle’s linear algebra, but about Lean.

v

interesting concepts / syntax / tools / ...
some of these would fit for Isabelle
thinking outside the boundary of HOL
convince people to use Lean!

v

v

v
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Outline

» What is Lean
» Lean Architecture
» Dependent Types (Uniform Syntax)
» Some Syntactic Sugar
> ...
» Library
» Topology: Uniform spaces and Reals
» Summation operator
» Measure theory
» Recently: cardinals
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What is Lean



Lean architecture

VM

» execute meta-
expressions

» tactics
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Types are terms!
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HOL happens in Type,
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« :Type, =— 1list a:Type,,
i.e. list: Type, — Type,

v

vec : Type, —+ N — Type,

v

Also: types can be empty!
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Dependent Types extend HOL

Proofs are terms!

» Prop : Type,
— type universe of propositions (i.e. =~ bool)
» true,false,...: Prop
— propositions are types
» truel : true
— proofs are the elements of propositions
» false is empty!
— Va, false — «
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Dependent Types in Lean

Lean is now:
» a little bit of outer syntax

» dependent type language + (a lot of) syntactic
sugar

» one language to express: terms, types, proofs

def double (a : Z) : 7Z :=
a+ a

lemma double O : double 0 = 0 :=
add zero O
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Ex: recursion for types, fun, & proofs

¢ ¢

-— Type ‘wec

def vec (a : Type) : N — Type
| O unit

| (m+ 1) := a X vecn
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-- Type ‘vec’

def vec (a : Type) : N — Type
| O 1= unit

| (m+ 1) := a X vecn

-- Function ‘map‘

def map (a 8 : Type) (f : a — () :
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Ex: recursion for types, fun, & proofs

-- Type ‘vec’

def vec (a : Type) : N — Type
| O 1= unit

| (m+ 1) := a X vecn

-- Function ‘map‘
def map (a B : Type) (f : a — ) :
M@ : N), vecan — vec fn

| 0 O O
| (m +1) (a, v) := (f a, map n v)

—-- Theorem ‘map_id°‘
lemma map_id (a : Type) :
Va:N) (v:vecan), mapaaoaidnv=yv
| O O rfl
| (o + 1) (a, v) := by simp [map, map_id n v]



Nice case analysis for proofs

Equation compiler allows a precise case analysis:

lemma ex : Vi (s : set N),
(dn€s, fn=1i) Vs =0 - Pis
| _ s (or.inl (n, hns, rfl)) :=
show P (f n) s, from sorry

| i  (or.inr rfl) :=
show P i (), from sorry
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Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1
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Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where
» xs : list «
» list.map : (o« — pB) — list a — list f3
» Result: list.map f xs
» Replaces map_ < type >, set_ < type >, ...

» Haskell $:
fa$ghb$ hxinstead of f a (g b (h x))
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Library



Basic algebraic and order hierarchy

Lean follows mostly Isabelles algebraic and order
hierarchy
» (partial) orders, (complete) lattices, ...
» (commutative) semigroups, monoids, groups,
rings, and finally fields
» Start separating type classes containing

constants and pure predicates.
This makes also a difference in Isabelle

class module
(v @ inout Type u) (S : Type v) [inout ring al
extends has_scalar « [, add_comm_group [ :=
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» Filter library
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Topology

Filter library

v

Hierarchy follows Isabelle

v

Continuity is unbounded: continuous f

v

v

Operations on the structure itself:
complete_lattice(topological space «)
= constructions (nearly) for free
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Reals

» Uniform completion of
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Reals

Uniform completion of Q

Uniform spaces generalize metric spaces, but
do not require R

Rely heavily on filters

Hope: do uniform completion generally and
instantiate for R

Did not work out, still requires a lot of work

Finally: metric and order complete field
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Measure theory

Finally the freedom to do them right!

class measurable_space (a : Type u) := ...

class measure_space

(v : Type u) [measurable_space a] :=

(measure_of : [ls, is_measurable s — ennreal)

» with complete lattice structure, map, comap, ...
» currently up to the Lebesgue measure
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Cardinals

» a~ [ :=df : a— [, f bijective
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Cardinals

v

v

a~ [ :=3f : a — B, f bijective

~ is an equivalence relation on types!
cardinals, : Type,,; := Type,/~
unbounded cardinals: closed under P
semiring and total order (no wellorder yet)

Example application:
should allow most BNF constructions
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Conclusion

» type constructions are everywhere in DTT

18 /19



Conclusion

» type constructions are everywhere in DTT
» some constructions can be also done in Isabelle

18 /19



Conclusion
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> ..
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Thanks for listening



