Recent development in
Lean and its analysis

Johannes Holzl
(Matryoshka @ VU Amsterdam)

Linear Algebra in Isabelle/HOL
Universidad de La Rioja

THEOREM PROVER

19

Lean and its analysis

Not about Isabelle’s linear algebra, but about Lean.

v

interesting concepts / syntax / tools / ...
some of these would fit for Isabelle
thinking outside the boundary of HOL
convince people to use Lean!

v

v

v

2/19

Outline

» What is Lean
» Lean Architecture
» Dependent Types (Uniform Syntax)
» Some Syntactic Sugar
> ...
» Library
» Topology: Uniform spaces and Reals
» Summation operator
» Measure theory
» Recently: cardinals

19

What is Lean

Lean architecture

VM

» execute meta-
expressions

» tactics

5/19

Dependent Types extend HOL

Types are terms!

» N : Type,

Dependent Types extend HOL

Types are terms!

» N : Type,

> Type, : Type, 4
HOL happens in Type,

19

Dependent Types extend HOL

Types are terms!

» N : Type,

> Type, : Type,
HOL happens in Type,

» a:Type, =— 1list a:Type,
i.e. list: Type, — Type,

6 /19

Dependent Types extend HOL

Types are terms!

v

N : Type,

Type, : Type, 4
HOL happens in Type,

v

v

i.e. list: Type, — Type,

v

vec : Type, —+ N — Type,

« :Type, =— 1list a:Type,

6 /19

Dependent Types extend HOL

Types are terms!

v

N : Type,

Type, : Type, 4
HOL happens in Type,

v

v

« :Type, =— 1list a:Type,,
i.e. list: Type, — Type,

v

vec : Type, —+ N — Type,

v

Also: types can be empty!

6 /19

Dependent Types extend HOL

Proofs are terms!

» Prop : Type,
— type universe of propositions (i.e. =~ bool)

19

Dependent Types extend HOL

Proofs are terms!

» Prop : Type,

— type universe of propositions (i.e. =~ bool)
» true,false,...: Prop

— propositions are types

19

Dependent Types extend HOL

Proofs are terms!

» Prop : Type,

— type universe of propositions (i.e. =~ bool)
» true,false,...: Prop

— propositions are types

» truel : true
— proofs are the elements of propositions

Dependent Types extend HOL

Proofs are terms!

» Prop : Type,
— type universe of propositions (i.e. =~ bool)
» true,false,...: Prop
— propositions are types
» truel : true
— proofs are the elements of propositions
» false is empty!
— Va, false — «

19

Dependent Types in Lean

Lean is now:
» a little bit of outer syntax

» dependent type language + (a lot of) syntactic
sugar

» one language to express: terms, types, proofs

def double (a : Z) : 7Z :=
a+ a

lemma double O : double 0 = 0 :=
add zero O

19

Ex: recursion for types, fun, & proofs

¢ ¢

-— Type ‘wec

def vec (a : Type) : N — Type
| O unit

| (m+ 1) := a X vecn

/19

Ex: recursion for types, fun, & proofs

-- Type ‘vec’

def vec (a : Type) : N — Type
| O 1= unit

| (m+ 1) := a X vecn

-- Function ‘map‘

def map (a 8 : Type) (f : a — () :
M@ : N), vecan — vec fn

| 0 O O

| (m + 1) (a, v) := (f a, map n v)

/19

Ex: recursion for types, fun, & proofs

-- Type ‘vec’

def vec (a : Type) : N — Type
| O 1= unit

| (m+ 1) := a X vecn

-- Function ‘map‘
def map (a B : Type) (f : a —) :
M@ : N), vecan — vec fn

| 0 O O
| (m +1) (a, v) := (f a, map n v)

—-- Theorem ‘map_id°‘
lemma map_id (a : Type) :
Va:N) (v:vecan), mapaaoaidnv=yv
| O O rfl
| (o + 1) (a, v) := by simp [map, map_id n v]

Nice case analysis for proofs

Equation compiler allows a precise case analysis:

lemma ex : Vi (s : set N),
(dn€s, fn=1i) Vs =0 - Pis
| _ s (or.inl (n, hns, rfl)) :=
show P (f n) s, from sorry

| i (or.inr rfl) :=
show P i (), from sorry

10/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

11/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where

11/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where
» xs : list «

11/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where
» xs : list «
» list.map : (@ — [B) — list a — list (8

11/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where
» xs @ list o
» list.map : (@ — [B) — list a — list (8
» Result: list.map f xs

11/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where
» xs @ list o
» list.map : (@ — [B) — list a — list (8
» Result: list.map f xs
» Replaces map_ < type >, set_ < type >, ...

11/19

Some syntactic sugar

» Anonymous constructor:
(0, O) : Xn, vec Z n,
(2, by simp) : dn, n =1 + 1

» Special "dot"-syntax: xs.map f where
» xs : list «
» list.map : (o« — pB) — list a — list f3
» Result: list.map f xs
» Replaces map_ < type >, set_ < type >, ...

» Haskell $:
faghb hxinstead of f a (g b (h x))

11/19

Library

Basic algebraic and order hierarchy

Lean follows mostly Isabelles algebraic and order
hierarchy
» (partial) orders, (complete) lattices, ...
» (commutative) semigroups, monoids, groups,
rings, and finally fields
» Start separating type classes containing

constants and pure predicates.
This makes also a difference in Isabelle

class module
(v @ inout Type u) (S : Type v) [inout ring al
extends has_scalar « [, add_comm_group [:=

13/19

Topology

» Filter library

14 /19

Topology

» Filter library
» Hierarchy follows Isabelle

14 /19

Topology

» Filter library
» Hierarchy follows Isabelle
» Continuity is unbounded: continuous f

14 /19

Topology

Filter library

v

Hierarchy follows Isabelle

v

Continuity is unbounded: continuous f

v

v

Operations on the structure itself:
complete_lattice(topological space «)
= constructions (nearly) for free

14 /19

Reals

» Uniform completion of

15/19

Reals

» Uniform completion of QQ

» Uniform spaces generalize metric spaces, but
do not require R
Rely heavily on filters

15/19

Reals

» Uniform completion of QQ

» Uniform spaces generalize metric spaces, but
do not require R
Rely heavily on filters

» Hope: do uniform completion generally and
instantiate for R
Did not work out, still requires a lot of work

15/19

Reals

Uniform completion of Q

Uniform spaces generalize metric spaces, but
do not require R

Rely heavily on filters

Hope: do uniform completion generally and
instantiate for R

Did not work out, still requires a lot of work

Finally: metric and order complete field

15/19

Measure theory

Finally the freedom to do them right!

class measurable_space (a : Type u) := ...

class measure_space

(v : Type u) [measurable_space a] :=

(measure_of : [ls, is_measurable s — ennreal)

» with complete lattice structure, map, comap, ...
» currently up to the Lebesgue measure

16 /19

Cardinals

» a~ [:=df : a— [, f bijective

17 /19

Cardinals

» a~ [:=df : a— [, f bijective
» =~ is an equivalence relation on types!

17 /19

Cardinals

» a~ [:=df : a— [, f bijective
» =~ is an equivalence relation on types!
» cardinals, : Type,,; := Type,/~

19

Cardinals

v

a~ [:=3f : a — B, f bijective
~ is an equivalence relation on types!

v

v

cardinals, : Type,,; := Type,/~
unbounded cardinals: closed under P

v

19

Cardinals

v

a~ [:=3f : a — B, f bijective
~ is an equivalence relation on types!

v

v

cardinals, : Type,,; := Type,/~
unbounded cardinals: closed under P

v

v

semiring and total order (no wellorder yet)

17 /19

Cardinals

v

v

a~ [:=3f : a — B, f bijective

~ is an equivalence relation on types!
cardinals, : Type,,; := Type,/~
unbounded cardinals: closed under P
semiring and total order (no wellorder yet)

Example application:
should allow most BNF constructions

17 /19

Conclusion

» type constructions are everywhere in DTT

18 /19

Conclusion

» type constructions are everywhere in DTT
» some constructions can be also done in Isabelle

18 /19

Conclusion

» type constructions are everywhere in DTT
» some constructions can be also done in Isabelle

> ..

18 /19

Thanks for listening

