
Automatización de Análisis Asintótico
en Isabelle/HOL

Manuel Eberl
Technische Universität München

16 de noviembre de 2017

Agenda

1. A Smörgåsbord of Asymptotic Analysis in Isabelle/HOL
2. Formal Aspects of Asymptotics in Isabelle
3. Automating Asympotics

Disclaimer
I did not invent any of these things.

I just figured out how to do them in Isabelle/HOL

A Smörgåsbord of Asymptotic Analysis
in Isabelle/HOL

Euler–MacLaurin formula
Relates the value of a sum to the corresponding integral

b
∑

i=a+1
f (i)−

∫ b

a
f (x)dx =

N
∑
k=1

Bk
k !

(
f (k−1)(b)− f (k−1)(a)

)
+R

where R =
(−1)N

N !

∫ b

a
B̄N(x)f (x)dx

Applications:
▶ Approximating ugly sums with nice integrals
▶ Derive asymptotic expansions
▶ Define Hurwitz/Riemann ζ on all of C

Useful e. g. for n!, Hn, Γ, ψ, . . .

Euler–MacLaurin formula
Relates the value of a sum to the corresponding integral

b
∑

i=a+1
f (i)−

∫ b

a
f (x)dx =

N
∑
k=1

Bk
k !

(
f (k−1)(b)− f (k−1)(a)

)
+R

where R =
(−1)N

N !

∫ b

a
B̄N(x)f (x)dx

Applications:
▶ Approximating ugly sums with nice integrals

▶ Derive asymptotic expansions
▶ Define Hurwitz/Riemann ζ on all of C

Useful e. g. for n!, Hn, Γ, ψ, . . .

Euler–MacLaurin formula
Relates the value of a sum to the corresponding integral

b
∑

i=a+1
f (i)−

∫ b

a
f (x)dx =

N
∑
k=1

Bk
k !

(
f (k−1)(b)− f (k−1)(a)

)
+R

where R =
(−1)N

N !

∫ b

a
B̄N(x)f (x)dx

Applications:
▶ Approximating ugly sums with nice integrals
▶ Derive asymptotic expansions

▶ Define Hurwitz/Riemann ζ on all of C

Useful e. g. for n!, Hn, Γ, ψ, . . .

Euler–MacLaurin formula
Relates the value of a sum to the corresponding integral

b
∑

i=a+1
f (i)−

∫ b

a
f (x)dx =

N
∑
k=1

Bk
k !

(
f (k−1)(b)− f (k−1)(a)

)
+R

where R =
(−1)N

N !

∫ b

a
B̄N(x)f (x)dx

Applications:
▶ Approximating ugly sums with nice integrals
▶ Derive asymptotic expansions
▶ Define Hurwitz/Riemann ζ on all of C

Useful e. g. for n!, Hn, Γ, ψ, . . .

Euler–MacLaurin formula
Relates the value of a sum to the corresponding integral

b
∑

i=a+1
f (i)−

∫ b

a
f (x)dx =

N
∑
k=1

Bk
k !

(
f (k−1)(b)− f (k−1)(a)

)
+R

where R =
(−1)N

N !

∫ b

a
B̄N(x)f (x)dx

Applications:
▶ Approximating ugly sums with nice integrals
▶ Derive asymptotic expansions
▶ Define Hurwitz/Riemann ζ on all of C

Useful e. g. for n!, Hn, Γ, ψ, . . .

Linear Recurrences

Theory and solver for linear recurrences with constant
coefficients, i. e.

a0f (n) + . . . + ak f (n + k) = bn .

Applications:
▶ Fibonacci numbers

▶ Combinatorics of lists
▶ Average-case analysis of algorithms (cf. Flajolet)
▶ Analysis of probabilistic programs: Random Walk

Linear Recurrences

Theory and solver for linear recurrences with constant
coefficients, i. e.

a0f (n) + . . . + ak f (n + k) = bn .

Applications:
▶ Fibonacci numbers
▶ Combinatorics of lists

▶ Average-case analysis of algorithms (cf. Flajolet)
▶ Analysis of probabilistic programs: Random Walk

Linear Recurrences

Theory and solver for linear recurrences with constant
coefficients, i. e.

a0f (n) + . . . + ak f (n + k) = bn .

Applications:
▶ Fibonacci numbers
▶ Combinatorics of lists
▶ Average-case analysis of algorithms (cf. Flajolet)

▶ Analysis of probabilistic programs: Random Walk

Linear Recurrences

Theory and solver for linear recurrences with constant
coefficients, i. e.

a0f (n) + . . . + ak f (n + k) = bn .

Applications:
▶ Fibonacci numbers
▶ Combinatorics of lists
▶ Average-case analysis of algorithms (cf. Flajolet)
▶ Analysis of probabilistic programs: Random Walk

Akra–Bazzi Theorem
The nuclear option for analysing asymptotics of
Divide-and-Conquer recurrences

Input:
f (n) = g(n) + ∑ ai f (bin + hi (n))

Output:

f ∈ Θ
(

xp
(

1 +
∫ x

t

g(u)
up+1 du

))
Applications:
▶ Merge Sort: f (⌊n/2⌋) + f (⌈n/2⌉) + n, =⇒ Θ(n log n)
▶ QuickSelect: f (⌊1

5n⌋) + f (⌊ 7
10n⌋+ 6) + 12

5 n, =⇒ Θ(n)

Akra–Bazzi Theorem
The nuclear option for analysing asymptotics of
Divide-and-Conquer recurrences
Input:

f (n) = g(n) + ∑ ai f (bin + hi (n))

Output:

f ∈ Θ
(

xp
(

1 +
∫ x

t

g(u)
up+1 du

))
Applications:
▶ Merge Sort: f (⌊n/2⌋) + f (⌈n/2⌉) + n, =⇒ Θ(n log n)
▶ QuickSelect: f (⌊1

5n⌋) + f (⌊ 7
10n⌋+ 6) + 12

5 n, =⇒ Θ(n)

Akra–Bazzi Theorem
The nuclear option for analysing asymptotics of
Divide-and-Conquer recurrences
Input:

f (n) = g(n) + ∑ ai f (bin + hi (n))

Output:

f ∈ Θ
(

xp
(

1 +
∫ x

t

g(u)
up+1 du

))

Applications:
▶ Merge Sort: f (⌊n/2⌋) + f (⌈n/2⌉) + n, =⇒ Θ(n log n)
▶ QuickSelect: f (⌊1

5n⌋) + f (⌊ 7
10n⌋+ 6) + 12

5 n, =⇒ Θ(n)

Akra–Bazzi Theorem
The nuclear option for analysing asymptotics of
Divide-and-Conquer recurrences
Input:

f (n) = g(n) + ∑ ai f (bin + hi (n))

Output:

f ∈ Θ
(

xp
(

1 +
∫ x

t

g(u)
up+1 du

))
Applications:
▶ Merge Sort: f (⌊n/2⌋) + f (⌈n/2⌉) + n, =⇒ Θ(n log n)

▶ QuickSelect: f (⌊1
5n⌋) + f (⌊ 7

10n⌋+ 6) + 12
5 n, =⇒ Θ(n)

Akra–Bazzi Theorem
The nuclear option for analysing asymptotics of
Divide-and-Conquer recurrences
Input:

f (n) = g(n) + ∑ ai f (bin + hi (n))

Output:

f ∈ Θ
(

xp
(

1 +
∫ x

t

g(u)
up+1 du

))
Applications:
▶ Merge Sort: f (⌊n/2⌋) + f (⌈n/2⌉) + n, =⇒ Θ(n log n)
▶ QuickSelect: f (⌊1

5n⌋) + f (⌊ 7
10n⌋+ 6) + 12

5 n, =⇒ Θ(n)

Analytic Combinatorics

Analyse sequence (an)n∈N via its generating function ∑ anX n.

Example: Catalan Numbers
▶ C0 = 1, Cn+1 = ∑n

i=0 CiCn−i
▶ Let F := ∑ CnX n and note F = 1 + XF 2

▶ Hence F = 1
2(1−

√
1− 4X)

▶ Via ‘Binomial Theorem’: Cn = 1
n+1(

2n
n)

▶ Via Gamma function: Cn ∼ 4n
√

πn1.5

Analytic Combinatorics

Analyse sequence (an)n∈N via its generating function ∑ anX n.
Example: Catalan Numbers
▶ C0 = 1, Cn+1 = ∑n

i=0 CiCn−i

▶ Let F := ∑ CnX n and note F = 1 + XF 2

▶ Hence F = 1
2(1−

√
1− 4X)

▶ Via ‘Binomial Theorem’: Cn = 1
n+1(

2n
n)

▶ Via Gamma function: Cn ∼ 4n
√

πn1.5

Analytic Combinatorics

Analyse sequence (an)n∈N via its generating function ∑ anX n.
Example: Catalan Numbers
▶ C0 = 1, Cn+1 = ∑n

i=0 CiCn−i
▶ Let F := ∑ CnX n and note F = 1 + XF 2

▶ Hence F = 1
2(1−

√
1− 4X)

▶ Via ‘Binomial Theorem’: Cn = 1
n+1(

2n
n)

▶ Via Gamma function: Cn ∼ 4n
√

πn1.5

Analytic Combinatorics

Analyse sequence (an)n∈N via its generating function ∑ anX n.
Example: Catalan Numbers
▶ C0 = 1, Cn+1 = ∑n

i=0 CiCn−i
▶ Let F := ∑ CnX n and note F = 1 + XF 2

▶ Hence F = 1
2(1−

√
1− 4X)

▶ Via ‘Binomial Theorem’: Cn = 1
n+1(

2n
n)

▶ Via Gamma function: Cn ∼ 4n
√

πn1.5

Analytic Combinatorics

Analyse sequence (an)n∈N via its generating function ∑ anX n.
Example: Catalan Numbers
▶ C0 = 1, Cn+1 = ∑n

i=0 CiCn−i
▶ Let F := ∑ CnX n and note F = 1 + XF 2

▶ Hence F = 1
2(1−

√
1− 4X)

▶ Via ‘Binomial Theorem’: Cn = 1
n+1(

2n
n)

▶ Via Gamma function: Cn ∼ 4n
√

πn1.5

Analytic Combinatorics

Analyse sequence (an)n∈N via its generating function ∑ anX n.
Example: Catalan Numbers
▶ C0 = 1, Cn+1 = ∑n

i=0 CiCn−i
▶ Let F := ∑ CnX n and note F = 1 + XF 2

▶ Hence F = 1
2(1−

√
1− 4X)

▶ Via ‘Binomial Theorem’: Cn = 1
n+1(

2n
n)

▶ Via Gamma function: Cn ∼ 4n
√

πn1.5

Analytic Combinatorics

We can determine growth of coefficients of meromorphic
generating functions using Complex Analysis.

Example: Bernoulli numbers
▶ Exponential generating function of Bn is X /(eX − 1)

▶ Poles at all 2ikπ with k ∈ Z \ {0}
▶ Dominant poles ±2iπ; neglect other poles
▶ Bn ∼ 2(−1)n+1 (2n)!

(2π)2n

Can also be used to prove ζ(2n) = 1
2(−1)n+1B2n

(2π)2n

(2n)! .

Analytic Combinatorics

We can determine growth of coefficients of meromorphic
generating functions using Complex Analysis.

Example: Bernoulli numbers
▶ Exponential generating function of Bn is X /(eX − 1)
▶ Poles at all 2ikπ with k ∈ Z \ {0}

▶ Dominant poles ±2iπ; neglect other poles
▶ Bn ∼ 2(−1)n+1 (2n)!

(2π)2n

Can also be used to prove ζ(2n) = 1
2(−1)n+1B2n

(2π)2n

(2n)! .

Analytic Combinatorics

We can determine growth of coefficients of meromorphic
generating functions using Complex Analysis.

Example: Bernoulli numbers
▶ Exponential generating function of Bn is X /(eX − 1)
▶ Poles at all 2ikπ with k ∈ Z \ {0}
▶ Dominant poles ±2iπ; neglect other poles

▶ Bn ∼ 2(−1)n+1 (2n)!
(2π)2n

Can also be used to prove ζ(2n) = 1
2(−1)n+1B2n

(2π)2n

(2n)! .

Analytic Combinatorics

We can determine growth of coefficients of meromorphic
generating functions using Complex Analysis.

Example: Bernoulli numbers
▶ Exponential generating function of Bn is X /(eX − 1)
▶ Poles at all 2ikπ with k ∈ Z \ {0}
▶ Dominant poles ±2iπ; neglect other poles
▶ Bn ∼ 2(−1)n+1 (2n)!

(2π)2n

Can also be used to prove ζ(2n) = 1
2(−1)n+1B2n

(2π)2n

(2n)! .

Analytic Combinatorics

We can determine growth of coefficients of meromorphic
generating functions using Complex Analysis.

Example: Bernoulli numbers
▶ Exponential generating function of Bn is X /(eX − 1)
▶ Poles at all 2ikπ with k ∈ Z \ {0}
▶ Dominant poles ±2iπ; neglect other poles
▶ Bn ∼ 2(−1)n+1 (2n)!

(2π)2n

Can also be used to prove ζ(2n) = 1
2(−1)n+1B2n

(2π)2n

(2n)! .

Some applications to program analysis

▶ Akra–Bazzi: Merge Sort, Karatsuba, QuickSelect

▶ Linear Recurrences: Expected length of a Random Walk
▶ Dirichlet series: Expected number of divisors; density of

squarefree numbers, coprime numbers
▶ Other: General comparison sorting, QuickSort, BSTs,

Treaps, Skip Lists

Some applications to program analysis

▶ Akra–Bazzi: Merge Sort, Karatsuba, QuickSelect
▶ Linear Recurrences: Expected length of a Random Walk

▶ Dirichlet series: Expected number of divisors; density of
squarefree numbers, coprime numbers

▶ Other: General comparison sorting, QuickSort, BSTs,
Treaps, Skip Lists

Some applications to program analysis

▶ Akra–Bazzi: Merge Sort, Karatsuba, QuickSelect
▶ Linear Recurrences: Expected length of a Random Walk
▶ Dirichlet series: Expected number of divisors; density of

squarefree numbers, coprime numbers

▶ Other: General comparison sorting, QuickSort, BSTs,
Treaps, Skip Lists

Some applications to program analysis

▶ Akra–Bazzi: Merge Sort, Karatsuba, QuickSelect
▶ Linear Recurrences: Expected length of a Random Walk
▶ Dirichlet series: Expected number of divisors; density of

squarefree numbers, coprime numbers
▶ Other: General comparison sorting, QuickSort, BSTs,

Treaps, Skip Lists

Formal Aspects of Asymptotics in Isabelle

Asymptotics in Isabelle

Filters to describe ‘neighbourhoods’ and thereby limits

lim
x→∞

f (x) = c =̂ filterlim f (nhds c) at_top

filterlim f F G = filtermap f G ≤ F

‘ f (x) goes to F as as x → G iff neighbourhood G mapped
with f is contained in neighbourhood F . ’

Filters also make it possible to say ‘P(x) holds for all x
sufficiently big / close to x0.’

Asymptotics in Isabelle

Filters to describe ‘neighbourhoods’ and thereby limits

lim
x→∞

f (x) = c =̂ filterlim f (nhds c) at_top

filterlim f F G = filtermap f G ≤ F

‘ f (x) goes to F as as x → G iff neighbourhood G mapped
with f is contained in neighbourhood F . ’

Filters also make it possible to say ‘P(x) holds for all x
sufficiently big / close to x0.’

Asymptotics in Isabelle

Filters to describe ‘neighbourhoods’ and thereby limits

lim
x→∞

f (x) = c =̂ filterlim f (nhds c) at_top

filterlim f F G = filtermap f G ≤ F

‘ f (x) goes to F as as x → G iff neighbourhood G mapped
with f is contained in neighbourhood F . ’

Filters also make it possible to say ‘P(x) holds for all x
sufficiently big / close to x0.’

Asymptotics in Isabelle

Filters to describe ‘neighbourhoods’ and thereby limits

lim
x→∞

f (x) = c =̂ filterlim f (nhds c) at_top

filterlim f F G = filtermap f G ≤ F

‘ f (x) goes to F as as x → G iff neighbourhood G mapped
with f is contained in neighbourhood F . ’

Filters also make it possible to say ‘P(x) holds for all x
sufficiently big / close to x0.’

Asymptotics in Isabelle

Landau symbols to relate functions w. r. t. asymptotic
behaviour

(λx . x) ∈ O(λx . x ∗ ln x)
(λx . x2) ∈ O[at 0](λx . x)

What does ‘QuickSort needs O(|xs|2) comparisons’ mean?

qs_cost ∈ O[length going_to at_top](λxs. (length xs)2)

Asymptotics in Isabelle

Landau symbols to relate functions w. r. t. asymptotic
behaviour

(λx . x) ∈ O(λx . x ∗ ln x)

(λx . x2) ∈ O[at 0](λx . x)

What does ‘QuickSort needs O(|xs|2) comparisons’ mean?

qs_cost ∈ O[length going_to at_top](λxs. (length xs)2)

Asymptotics in Isabelle

Landau symbols to relate functions w. r. t. asymptotic
behaviour

(λx . x) ∈ O(λx . x ∗ ln x)
(λx . x2) ∈ O[at 0](λx . x)

What does ‘QuickSort needs O(|xs|2) comparisons’ mean?

qs_cost ∈ O[length going_to at_top](λxs. (length xs)2)

Asymptotics in Isabelle

Landau symbols to relate functions w. r. t. asymptotic
behaviour

(λx . x) ∈ O(λx . x ∗ ln x)
(λx . x2) ∈ O[at 0](λx . x)

What does ‘QuickSort needs O(|xs|2) comparisons’ mean?

qs_cost ∈ O[length going_to at_top](λxs. (length xs)2)

Asymptotics in Isabelle

Landau symbols to relate functions w. r. t. asymptotic
behaviour

(λx . x) ∈ O(λx . x ∗ ln x)
(λx . x2) ∈ O[at 0](λx . x)

What does ‘QuickSort needs O(|xs|2) comparisons’ mean?

qs_cost ∈ O[length going_to at_top](λxs. (length xs)2)

Asymptotics in Isabelle
▶ Some automation to do ‘obvious’ simplifications

if g ∈ o(f) : O(λx . f x + g x) ⇝ O(f)

(λx . f x ∗ h x) ∈ O(λx . g x ∗ h x) ⇝ f ∈ O(g)

(λx . xa ∗ (ln x)b) ∈ O(λx . x c ∗ (ln x)d) ⇝
a < c ∨ (a = c ∧ b ≤ d)

Things like (λx . 2 ∗ x + x ∗ ln ln x) ∈ O(λx . x ∗ ln x) get
proven automatically.

Asymptotics in Isabelle
▶ Some automation to do ‘obvious’ simplifications

if g ∈ o(f) : O(λx . f x + g x) ⇝ O(f)

(λx . f x ∗ h x) ∈ O(λx . g x ∗ h x) ⇝ f ∈ O(g)

(λx . xa ∗ (ln x)b) ∈ O(λx . x c ∗ (ln x)d) ⇝
a < c ∨ (a = c ∧ b ≤ d)

Things like (λx . 2 ∗ x + x ∗ ln ln x) ∈ O(λx . x ∗ ln x) get
proven automatically.

Asymptotics in Isabelle
▶ Some automation to do ‘obvious’ simplifications

if g ∈ o(f) : O(λx . f x + g x) ⇝ O(f)

(λx . f x ∗ h x) ∈ O(λx . g x ∗ h x) ⇝ f ∈ O(g)

(λx . xa ∗ (ln x)b) ∈ O(λx . x c ∗ (ln x)d) ⇝
a < c ∨ (a = c ∧ b ≤ d)

Things like (λx . 2 ∗ x + x ∗ ln ln x) ∈ O(λx . x ∗ ln x) get
proven automatically.

Asymptotics in Isabelle
▶ Some automation to do ‘obvious’ simplifications

if g ∈ o(f) : O(λx . f x + g x) ⇝ O(f)

(λx . f x ∗ h x) ∈ O(λx . g x ∗ h x) ⇝ f ∈ O(g)

(λx . xa ∗ (ln x)b) ∈ O(λx . x c ∗ (ln x)d) ⇝
a < c ∨ (a = c ∧ b ≤ d)

Things like (λx . 2 ∗ x + x ∗ ln ln x) ∈ O(λx . x ∗ ln x) get
proven automatically.

Asymptotics in Isabelle
▶ Some automation to do ‘obvious’ simplifications

if g ∈ o(f) : O(λx . f x + g x) ⇝ O(f)

(λx . f x ∗ h x) ∈ O(λx . g x ∗ h x) ⇝ f ∈ O(g)

(λx . xa ∗ (ln x)b) ∈ O(λx . x c ∗ (ln x)d) ⇝
a < c ∨ (a = c ∧ b ≤ d)

Things like (λx . 2 ∗ x + x ∗ ln ln x) ∈ O(λx . x ∗ ln x) get
proven automatically.

Automating Asymptotics

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1 + 1

logε/2
(

bx + x
log1+ε x

)
−

(
1 + 1

logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’
In Isabelle: 700 lines of messy proofs

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1 + 1

logε/2
(

bx + x
log1+ε x

)
−

(
1 + 1

logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’
In Isabelle: 700 lines of messy proofs

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1 + 1

logε/2
(

bx + x
log1+ε x

)
−

(
1 + 1

logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’

In Isabelle: 700 lines of messy proofs

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra–Bazzi

lim
x→∞

(
1− 1

b log1+ε x

)p
1 + 1

logε/2
(

bx + x
log1+ε x

)
−

(
1 + 1

logε/2 x

)
= 0+

Original author: ‘Trivial, just Taylor-expand it!’
In Isabelle: 700 lines of messy proofs

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1 + ε)) ˆ p) ∗

(1 + ln (b ∗ x + x/ln x ˆ(1 + ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top

by magic

This is what we would like to have.
Computer Algebra Systems can do this (sort of)

So why can’t we?

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1 + ε)) ˆ p) ∗

(1 + ln (b ∗ x + x/ln x ˆ(1 + ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top
by magic

This is what we would like to have.
Computer Algebra Systems can do this (sort of)

So why can’t we?

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1 + ε)) ˆ p) ∗

(1 + ln (b ∗ x + x/ln x ˆ(1 + ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top
by magic

This is what we would like to have.

Computer Algebra Systems can do this (sort of)
So why can’t we?

lemma akra_bazzi_aux:
filterlim
(λx . (1− 1/(b ∗ ln x ˆ(1 + ε)) ˆ p) ∗

(1 + ln (b ∗ x + x/ln x ˆ(1 + ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top
by magic

This is what we would like to have.
Computer Algebra Systems can do this (sort of)

So why can’t we?

Asymptotic Expansions

Related Work

▶ Asymptotic Expansions of exp–log Functions by
Richardson, Salvy, Shackell, van der Hoeven

▶ On Computing Limits in a Symbolic Manipulation System
by Gruntz

Asymptotic Expansions
For x → ∞, we have:

e1/x ∼ 1 + x−1 + 1
2x−2 + 1

6x−3 + . . .

1
1 + x−1 ∼ 1− x−1 + x−2 − x−3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.
They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → ∞, we have:

e1/x ∼ 1 + x−1 + 1
2x−2 + 1

6x−3 + . . .

1
1 + x−1 ∼ 1− x−1 + x−2 − x−3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.
They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → ∞, we have:

e1/x ∼ 1 + x−1 + 1
2x−2 + 1

6x−3 + . . .

1
1 + x−1 ∼ 1− x−1 + x−2 − x−3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.

They can be added/subtracted/multiplied/divided.
Limits can simply be ‘read off’

Asymptotic Expansions
For x → ∞, we have:

e1/x ∼ 1 + x−1 + 1
2x−2 + 1

6x−3 + . . .

1
1 + x−1 ∼ 1− x−1 + x−2 − x−3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.
They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions
For x → ∞, we have:

e1/x ∼ 1 + x−1 + 1
2x−2 + 1

6x−3 + . . .

1
1 + x−1 ∼ 1− x−1 + x−2 − x−3 + . . .

This means: Cutting off f (x) ∼ a0(x) + a1(x) + . . . at term
an yields error O(an+1(x)).

Expansions contain the full asymptotic information.
They can be added/subtracted/multiplied/divided.

Limits can simply be ‘read off’

Asymptotic Expansions

� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x e0 + c1x e1 + . . .

for x → ∞ where e0 > e1 > . . .

Asymptotic Expansions

� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x e0 + c1x e1 + . . .

for x → ∞ where e0 > e1 > . . .

Asymptotic Expansions

� Not all functions have such easy expansions!
e. g. exp (at ±∞) and ln (at ∞, 0)

Solution: later

For now, we only consider expansions of the form

f (x) ∼ c0x e0 + c1x e1 + . . .

for x → ∞ where e0 > e1 > . . .

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs + ys
| e1 < e2 = (c1, e1) :: xs + ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs + ys
| e1 < e2 = (c1, e1) :: xs + ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs + ys
| e1 < e2 = (c1, e1) :: xs + ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs

((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs + ys
| e1 < e2 = (c1, e1) :: xs + ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions
How can one do concrete operations on these expansions?

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

(+) : Exp→ Exp→ Exp
[] + ys = ys
xs + [] = xs
((c1, e1) :: xs) + ((c2, e2) :: ys)
| e1 == e2 = (c1 + c2, e1) :: xs + ys
| e1 < e2 = (c1, e1) :: xs + ((c2, e2) :: ys)
| e1 > e2 = (c2, e2) :: ((c1, e1) :: xs) + ys

Asymptotic Expansions – Multiplication
Multiplication with ‘atomic’ factor c ′x e′ :

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []
((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =

(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys + xs ∗ ((c2, e2) :: ys)

Asymptotic Expansions – Multiplication
Multiplication with ‘atomic’ factor c ′x e′ :

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []

((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =
(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys + xs ∗ ((c2, e2) :: ys)

Asymptotic Expansions – Multiplication
Multiplication with ‘atomic’ factor c ′x e′ :

scale : R→ R→ Exp→ Exp
scale c ′ e ′ xs = [(c ∗ c ′, e + e ′) | (c , e)← xs]

Multiplication of two expansions:
(∗) : Exp→ Exp→ Exp
xs ∗ [] = []
[] ∗ ys = []
((c1, e1) :: xs) ∗ ((c2, e2) :: ys) =

(c1 ∗ c2, e1 + e2) :: scale c1 e1 ys + xs ∗ ((c2, e2) :: ys)

Asymptotic Expansions – Other operations

Reciprocal and some other things (sin, cos at finite points) can
easily be handled by Taylor Expansion plus some tricks.

But: Remember: ln x and exp x have no power series
expansion for x → ∞!

Asymptotic Expansions – Other operations

Reciprocal and some other things (sin, cos at finite points) can
easily be handled by Taylor Expansion plus some tricks.

But: Remember: ln x and exp x have no power series
expansion for x → ∞!

Asymptotic Expansions – Other operations

Reciprocal and some other things (sin, cos at finite points) can
easily be handled by Taylor Expansion plus some tricks.

But: Remember: ln x and exp x have no power series
expansion for x → ∞!

Asymptotic Expansions – Other operations
Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.

Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x ∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x ∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.
Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x ∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x ∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.
Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x ∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x ∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations
Solution: Allow not only powers of x , but products of powers
of an asymptotic basis.
Example: (ex , x , ln x) is an asymptotic basis and generates
monomials eaxxb lnc x

e4x + 2x3 ln x ∧
= [1 · (4, 0, 0), 2 · (0, 3, 1)]

Alternative hierarchical view: Coefficients of an expansion
w. r. t. basis b :: bs are functions, each of which has an
expansion w. r. t. bs.

e4x + 2x3 ln x ∧
= [(4, (0, (0, 1))), (0, (3, (1, 2)))

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
▶ Limit is 0 if ei < 0
▶ Limit is sgn(c) ·∞ if ei > 0
▶ Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)e1 . . . bn(x)en + . . .

Just determine first non-zero ei :

▶ Limit is 0 if ei < 0
▶ Limit is sgn(c) ·∞ if ei > 0
▶ Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
▶ Limit is 0 if ei < 0

▶ Limit is sgn(c) ·∞ if ei > 0
▶ Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
▶ Limit is 0 if ei < 0
▶ Limit is sgn(c) ·∞ if ei > 0

▶ Limit is c if all ei = 0

Asymptotic Expansions – Other operations

Reading off limits is still easy:

f (x) ∼ c · b1(x)e1 . . . bn(x)en + . . .

Just determine first non-zero ei :
▶ Limit is 0 if ei < 0
▶ Limit is sgn(c) ·∞ if ei > 0
▶ Limit is c if all ei = 0

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where

Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list

datatype Exp : Basis→ Type where
Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where

Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where

Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c

negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Other operations
Before:

type Exp = (R×R) llist

negate : Exp→ Exp
negate xs = [(−c , e) | (c , e)← xs]

Now:
type Basis = (R→ R) list
datatype Exp : Basis→ Type where

Const : R→ Exp []
Exp : (Exp bs×R) llist→ Exp (b :: bs)

negate : Exp bs→ Exp bs
negate (Const c) = −c
negate (Exp xs) = Exp [(negate c , e) | (c , e)← xs]

Asymptotic Expansions – Exponential and
Logarithm

Basically: Just expand and add new basis elements whenever
that is not possible.

Tricky aspects:
▶ Lots of case distinctions
▶ Can introduce ugly new basis elements like exp(x + 1/x)
▶ Lots of opportunities for implementation bugs
▶ Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential and
Logarithm

Basically: Just expand and add new basis elements whenever
that is not possible.

Tricky aspects:
▶ Lots of case distinctions

▶ Can introduce ugly new basis elements like exp(x + 1/x)
▶ Lots of opportunities for implementation bugs
▶ Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential and
Logarithm

Basically: Just expand and add new basis elements whenever
that is not possible.

Tricky aspects:
▶ Lots of case distinctions
▶ Can introduce ugly new basis elements like exp(x + 1/x)

▶ Lots of opportunities for implementation bugs
▶ Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential and
Logarithm

Basically: Just expand and add new basis elements whenever
that is not possible.

Tricky aspects:
▶ Lots of case distinctions
▶ Can introduce ugly new basis elements like exp(x + 1/x)
▶ Lots of opportunities for implementation bugs

▶ Luckily, the Isabelle kernel caught them, of course. :)

Asymptotic Expansions – Exponential and
Logarithm

Basically: Just expand and add new basis elements whenever
that is not possible.

Tricky aspects:
▶ Lots of case distinctions
▶ Can introduce ugly new basis elements like exp(x + 1/x)
▶ Lots of opportunities for implementation bugs
▶ Luckily, the Isabelle kernel caught them, of course. :)

Proof method
Skipping a lot of magic: We can automatically prove
statements of the form
▶ f (x) −→ c
▶ f (x) ∼ g(x)
▶ f (x) ∈ L(g(x)) for any Landau symbol L

as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n√·
without restrictions

sin, cos, tan at finite points also possible.

Proof method
Skipping a lot of magic: We can automatically prove
statements of the form
▶ f (x) −→ c
▶ f (x) ∼ g(x)
▶ f (x) ∈ L(g(x)) for any Landau symbol L

as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n√·
without restrictions

sin, cos, tan at finite points also possible.

Proof method
Skipping a lot of magic: We can automatically prove
statements of the form
▶ f (x) −→ c
▶ f (x) ∼ g(x)
▶ f (x) ∈ L(g(x)) for any Landau symbol L

as x → l for l ∈ R∪ {±∞}

f and g can be built from + − · / ln exp min max ˆ | · | n√·
without restrictions

sin, cos, tan at finite points also possible.

Proof method
Example
lemma (λn. (1 + 1/n) ˆ n) −→ exp 1

by exp_log_asymptotics

Example
lemma ((λx . (1 + y/x) ˆ x) −→ exp y) at_top
proof (cases y = 0)

case False
thus ?thesis by exp_log_asymptotics

qed simp_all

Proof method
Example
lemma (λn. (1 + 1/n) ˆ n) −→ exp 1

by exp_log_asymptotics

Example
lemma ((λx . (1 + y/x) ˆ x) −→ exp y) at_top
proof (cases y = 0)

case False
thus ?thesis by exp_log_asymptotics

qed simp_all

Proof methodExample
lemma

assumes c > 1 and k > 0
shows (λn. n ˆ k) ∈ o(λn. c ˆ n)

using assms by exp_log_asymptotics

Example
lemma akra_bazzi_aux:

assumes b ∈ {0< ..<1} and ε > 0
shows filterlim (λx .

(1− H/(b ∗ ln x ˆ(1 + ε))) ˆ p ∗
(1+ ln (b ∗ x +H ∗ x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top
by (exp_log_asymptotics simp: mult_neg_pos)

Proof methodExample
lemma

assumes c > 1 and k > 0
shows (λn. n ˆ k) ∈ o(λn. c ˆ n)

using assms by exp_log_asymptotics

Example
lemma akra_bazzi_aux:

assumes b ∈ {0< ..<1} and ε > 0
shows filterlim (λx .

(1− H/(b ∗ ln x ˆ(1 + ε))) ˆ p ∗
(1+ ln (b ∗ x +H ∗ x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top

by (exp_log_asymptotics simp: mult_neg_pos)

Proof methodExample
lemma

assumes c > 1 and k > 0
shows (λn. n ˆ k) ∈ o(λn. c ˆ n)

using assms by exp_log_asymptotics

Example
lemma akra_bazzi_aux:

assumes b ∈ {0< ..<1} and ε > 0
shows filterlim (λx .

(1− H/(b ∗ ln x ˆ(1 + ε))) ˆ p ∗
(1+ ln (b ∗ x +H ∗ x/ln x ˆ(1+ ε)) ˆ(−ε/2))−
(1 + ln x ˆ(−ε/2)))

(at_right 0) at_top
by (exp_log_asymptotics simp: mult_neg_pos)

Discussion

What works well:
▶ Surprisingly, all examples I tried take no more than a few

seconds

▶ Algorithm copes very well with free variables that don’t
affect result

Problems:
▶ If many cancellations occur, performance gets very bad
▶ Getting zeroness/sign tests to work can be annoying
▶ Case distinctions have to be done manually

Discussion

What works well:
▶ Surprisingly, all examples I tried take no more than a few

seconds
▶ Algorithm copes very well with free variables that don’t

affect result

Problems:
▶ If many cancellations occur, performance gets very bad
▶ Getting zeroness/sign tests to work can be annoying
▶ Case distinctions have to be done manually

Discussion

What works well:
▶ Surprisingly, all examples I tried take no more than a few

seconds
▶ Algorithm copes very well with free variables that don’t

affect result
Problems:
▶ If many cancellations occur, performance gets very bad

▶ Getting zeroness/sign tests to work can be annoying
▶ Case distinctions have to be done manually

Discussion

What works well:
▶ Surprisingly, all examples I tried take no more than a few

seconds
▶ Algorithm copes very well with free variables that don’t

affect result
Problems:
▶ If many cancellations occur, performance gets very bad
▶ Getting zeroness/sign tests to work can be annoying

▶ Case distinctions have to be done manually

Discussion

What works well:
▶ Surprisingly, all examples I tried take no more than a few

seconds
▶ Algorithm copes very well with free variables that don’t

affect result
Problems:
▶ If many cancellations occur, performance gets very bad
▶ Getting zeroness/sign tests to work can be annoying
▶ Case distinctions have to be done manually

Discussion

▶ 5000 lines of Isabelle theory

▶ 3000 lines of (untrusted) ML code
▶ About 5 months of work so far
▶ Implementation was tricky to get right

Discussion

▶ 5000 lines of Isabelle theory
▶ 3000 lines of (untrusted) ML code

▶ About 5 months of work so far
▶ Implementation was tricky to get right

Discussion

▶ 5000 lines of Isabelle theory
▶ 3000 lines of (untrusted) ML code
▶ About 5 months of work so far

▶ Implementation was tricky to get right

Discussion

▶ 5000 lines of Isabelle theory
▶ 3000 lines of (untrusted) ML code
▶ About 5 months of work so far
▶ Implementation was tricky to get right

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996

(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996
(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996
(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996
(is now part of Mathematica)

Back then, all CASs gave wrong results
for many of his test cases!

Nowadays, most of them work

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them
Maxima and Sage take very long for some of them

and give wrong result for this:

exp

(
log log

(
x + e log x log log x)

log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically

Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them
Maxima and Sage take very long for some of them

and give wrong result for this:

exp

(
log log

(
x + e log x log log x)

log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them
Maxima and Sage take very long for some of them

and give wrong result for this:

exp

(
log log

(
x + e log x log log x)

log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them
Maxima and Sage take very long for some of them

and give wrong result for this:

exp

(
log log

(
x + e log x log log x)

log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Maxima and Sage take very long for some of them
and give wrong result for this:

exp

(
log log

(
x + e log x log log x)

log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
23 test cases lie in the fragment we support

All of them work automatically
Maximum time: 1.726 s; Median: 0.311 s

Mathematica and Maple do all of them
very quickly and correctly

Maxima, Sage, and SymPy fail on some of them
Maxima and Sage take very long for some of them

and give wrong result for this:

exp

(
log log

(
x + e log x log log x)

log log log (ex + x + ln x)

)
−→ e

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Comparison to CASs
How well are we doing?

Surprisingly, we are not that much slower (sometimes even
faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra–Bazzi example as
soon as variables are involved

In general, of course, Mathematica/Maple are much better in
both scope and speed

But: you have to trust the implementations.

Isabelle still isn’t a CAS – but we’re getting there.

Future Work

▶ Incomplete support for Γ, ψ(n), arctan

▶ Cannot handle oscillating functions
▶ User interaction for zeroness tests could be improved

Future Work

▶ Incomplete support for Γ, ψ(n), arctan
▶ Cannot handle oscillating functions

▶ User interaction for zeroness tests could be improved

Future Work

▶ Incomplete support for Γ, ψ(n), arctan
▶ Cannot handle oscillating functions
▶ User interaction for zeroness tests could be improved

Questions? Demo?

