Automatización de Análisis Asintótico en Isabelle/HOL

Manuel Eberl

Technische Universität München
16 de noviembre de 2017

Agenda

1. A Smörgåsbord of Asymptotic Analysis in Isabelle/HOL
2. Formal Aspects of Asymptotics in Isabelle
3. Automating Asympotics

Disclaimer

I did not invent any of these things. I just figured out how to do them in Isabelle/HOL

A Smörgåsbord of Asymptotic Analysis in Isabelle/HOL

Euler-MacLaurin formula

Relates the value of a sum to the corresponding integral

$$
\begin{aligned}
\sum_{i=a+1}^{b} f(i)-\int_{a}^{b} f(x) \mathrm{d} x & =\sum_{k=1}^{N} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R \\
\text { where } R & =\frac{(-1)^{N}}{N!} \int_{a}^{b} \bar{B}_{N}(x) f(x) \mathrm{d} x
\end{aligned}
$$

Euler-MacLaurin formula

Relates the value of a sum to the corresponding integral
$\sum_{i=a+1}^{b} f(i)-\int_{a}^{b} f(x) \mathrm{d} x=\sum_{k=1}^{N} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R$ where $\quad R=\frac{(-1)^{N}}{N!} \int_{a}^{b} \bar{B}_{N}(x) f(x) \mathrm{d} x$
Applications:

- Approximating ugly sums with nice integrals

Euler-MacLaurin formula

Relates the value of a sum to the corresponding integral
$\sum_{i=a+1}^{b} f(i)-\int_{a}^{b} f(x) \mathrm{d} x=\sum_{k=1}^{N} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R$ where $\quad R=\frac{(-1)^{N}}{N!} \int_{a}^{b} \bar{B}_{N}(x) f(x) \mathrm{d} x$
Applications:

- Approximating ugly sums with nice integrals
- Derive asymptotic expansions

Euler-MacLaurin formula

Relates the value of a sum to the corresponding integral
$\sum_{i=a+1}^{b} f(i)-\int_{a}^{b} f(x) \mathrm{d} x=\sum_{k=1}^{N} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R$ where $\quad R=\frac{(-1)^{N}}{N!} \int_{a}^{b} \bar{B}_{N}(x) f(x) \mathrm{d} x$
Applications:

- Approximating ugly sums with nice integrals
- Derive asymptotic expansions
- Define Hurwitz/Riemann ζ on all of \mathbb{C}

Euler-MacLaurin formula

Relates the value of a sum to the corresponding integral
$\sum_{i=a+1}^{b} f(i)-\int_{a}^{b} f(x) \mathrm{d} x=\sum_{k=1}^{N} \frac{B_{k}}{k!}\left(f^{(k-1)}(b)-f^{(k-1)}(a)\right)+R$ where $\quad R=\frac{(-1)^{N}}{N!} \int_{a}^{b} \bar{B}_{N}(x) f(x) \mathrm{d} x$
Applications:

- Approximating ugly sums with nice integrals
- Derive asymptotic expansions
- Define Hurwitz/Riemann ζ on all of \mathbb{C}

Useful e.g. for $n!, H_{n}, \Gamma, \psi, \ldots$

Linear Recurrences

Theory and solver for linear recurrences with constant coefficients, i.e.

$$
a_{0} f(n)+\ldots+a_{k} f(n+k)=b_{n}
$$

Applications:

- Fibonacci numbers

Linear Recurrences

Theory and solver for linear recurrences with constant coefficients, i.e.

$$
a_{0} f(n)+\ldots+a_{k} f(n+k)=b_{n}
$$

Applications:

- Fibonacci numbers
- Combinatorics of lists

Linear Recurrences

Theory and solver for linear recurrences with constant coefficients, i. e.

$$
a_{0} f(n)+\ldots+a_{k} f(n+k)=b_{n}
$$

Applications:

- Fibonacci numbers
- Combinatorics of lists
- Average-case analysis of algorithms (cf. Flajolet)

Linear Recurrences

Theory and solver for linear recurrences with constant coefficients, i. e.

$$
a_{0} f(n)+\ldots+a_{k} f(n+k)=b_{n}
$$

Applications:

- Fibonacci numbers
- Combinatorics of lists
- Average-case analysis of algorithms (cf. Flajolet)
- Analysis of probabilistic programs: Random Walk

Akra-Bazzi Theorem

The nuclear option for analysing asymptotics of Divide-and-Conquer recurrences

Akra-Bazzi Theorem

The nuclear option for analysing asymptotics of Divide-and-Conquer recurrences Input:

$$
f(n)=g(n)+\sum a_{i} f\left(b_{i} n+h_{i}(n)\right)
$$

Akra-Bazzi Theorem

The nuclear option for analysing asymptotics of Divide-and-Conquer recurrences Input:

$$
f(n)=g(n)+\sum a_{i} f\left(b_{i} n+h_{i}(n)\right)
$$

Output:

$$
f \in \Theta\left(x^{p}\left(1+\int_{t}^{x} \frac{g(u)}{u^{p+1}} \mathrm{~d} u\right)\right)
$$

Akra-Bazzi Theorem

The nuclear option for analysing asymptotics of Divide-and-Conquer recurrences Input:

$$
f(n)=g(n)+\sum a_{i} f\left(b_{i} n+h_{i}(n)\right)
$$

Output:

$$
f \in \Theta\left(x^{p}\left(1+\int_{t}^{x} \frac{g(u)}{u^{p+1}} \mathrm{~d} u\right)\right)
$$

Applications:

- Merge Sort: $f(\lfloor n / 2\rfloor)+f(\lceil n / 2\rceil)+n, \Longrightarrow \Theta(n \log n)$

Akra-Bazzi Theorem

The nuclear option for analysing asymptotics of Divide-and-Conquer recurrences Input:

$$
f(n)=g(n)+\sum a_{i} f\left(b_{i} n+h_{i}(n)\right)
$$

Output:

$$
f \in \Theta\left(x^{p}\left(1+\int_{t}^{x} \frac{g(u)}{u^{p+1}} \mathrm{~d} u\right)\right)
$$

Applications:

- Merge Sort: $f(\lfloor n / 2\rfloor)+f(\lceil n / 2\rceil)+n, \Longrightarrow \Theta(n \log n)$
- QuickSelect: $f\left(\left\lfloor\frac{1}{5} n\right\rfloor\right)+f\left(\left\lfloor\frac{7}{10} n\right\rfloor+6\right)+\frac{12}{5} n, \Longrightarrow \Theta(n)$

Analytic Combinatorics

Analyse sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ via its generating function $\sum a_{n} X^{n}$.

Analytic Combinatorics

Analyse sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ via its generating function $\sum a_{n} X^{n}$. Example: Catalan Numbers

- $C_{0}=1, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$

Analytic Combinatorics

Analyse sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ via its generating function $\sum a_{n} X^{n}$. Example: Catalan Numbers

- $C_{0}=1, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$
- Let $F:=\sum C_{n} X^{n}$ and note $F=1+X F^{2}$

Analytic Combinatorics

Analyse sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ via its generating function $\sum a_{n} X^{n}$. Example: Catalan Numbers

- $C_{0}=1, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$
- Let $F:=\sum C_{n} X^{n}$ and note $F=1+X F^{2}$
- Hence $F=\frac{1}{2}(1-\sqrt{1-4 X})$

Analytic Combinatorics

Analyse sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ via its generating function $\sum a_{n} X^{n}$. Example: Catalan Numbers

- $C_{0}=1, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$
- Let $F:=\sum C_{n} X^{n}$ and note $F=1+X F^{2}$
- Hence $F=\frac{1}{2}(1-\sqrt{1-4 X})$
- Via 'Binomial Theorem': $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$

Analytic Combinatorics

Analyse sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ via its generating function $\sum a_{n} X^{n}$. Example: Catalan Numbers

- $C_{0}=1, C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}$
- Let $F:=\sum C_{n} X^{n}$ and note $F=1+X F^{2}$
- Hence $F=\frac{1}{2}(1-\sqrt{1-4 X})$
- Via 'Binomial Theorem': $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$
- Via Gamma function: $C_{n} \sim \frac{4^{n}}{\sqrt{\pi} n^{1.5}}$

Analytic Combinatorics

We can determine growth of coefficients of meromorphic generating functions using Complex Analysis.

Example: Bernoulli numbers

- Exponential generating function of B_{n} is $X /\left(e^{X}-1\right)$

Analytic Combinatorics

We can determine growth of coefficients of meromorphic generating functions using Complex Analysis.

Example: Bernoulli numbers

- Exponential generating function of B_{n} is $X /\left(e^{X}-1\right)$
- Poles at all $2 i k \pi$ with $k \in \mathbb{Z} \backslash\{0\}$

Analytic Combinatorics

We can determine growth of coefficients of meromorphic generating functions using Complex Analysis.

Example: Bernoulli numbers

- Exponential generating function of B_{n} is $X /\left(e^{X}-1\right)$
- Poles at all $2 i k \pi$ with $k \in \mathbb{Z} \backslash\{0\}$
- Dominant poles $\pm 2 i \pi$; neglect other poles

Analytic Combinatorics

We can determine growth of coefficients of meromorphic generating functions using Complex Analysis.

Example: Bernoulli numbers

- Exponential generating function of B_{n} is $X /\left(e^{X}-1\right)$
- Poles at all $2 i k \pi$ with $k \in \mathbb{Z} \backslash\{0\}$
- Dominant poles $\pm 2 i \pi$; neglect other poles
- $B_{n} \sim 2(-1)^{n+1} \frac{(2 n)!}{(2 \pi)^{2 n}}$

Analytic Combinatorics

We can determine growth of coefficients of meromorphic generating functions using Complex Analysis.

Example: Bernoulli numbers

- Exponential generating function of B_{n} is $X /\left(e^{X}-1\right)$
- Poles at all $2 i k \pi$ with $k \in \mathbb{Z} \backslash\{0\}$
- Dominant poles $\pm 2 i \pi$; neglect other poles
- $B_{n} \sim 2(-1)^{n+1} \frac{(2 n)!}{(2 \pi)^{2 n}}$

Can also be used to prove $\zeta(2 n)=\frac{1}{2}(-1)^{n+1} B_{2 n} \frac{(2 \pi)^{2 n}}{(2 n)!}$.

Some applications to program analysis

- Akra-Bazzi: Merge Sort, Karatsuba, QuickSelect

Some applications to program analysis

- Akra-Bazzi: Merge Sort, Karatsuba, QuickSelect
- Linear Recurrences: Expected length of a Random Walk

Some applications to program analysis

- Akra-Bazzi: Merge Sort, Karatsuba, QuickSelect
- Linear Recurrences: Expected length of a Random Walk
- Dirichlet series: Expected number of divisors; density of squarefree numbers, coprime numbers

Some applications to program analysis

- Akra-Bazzi: Merge Sort, Karatsuba, QuickSelect
- Linear Recurrences: Expected length of a Random Walk
- Dirichlet series: Expected number of divisors; density of squarefree numbers, coprime numbers
- Other: General comparison sorting, QuickSort, BSTs, Treaps, Skip Lists

Formal Aspects of Asymptotics in Isabelle

Asymptotics in Isabelle

Filters to describe 'neighbourhoods' and thereby limits

Asymptotics in Isabelle

Filters to describe 'neighbourhoods' and thereby limits

$$
\lim _{x \rightarrow \infty} f(x)=c \hat{=} \text { filterlim } f \text { (nhds } c \text {) at_top }
$$

Asymptotics in Isabelle

Filters to describe 'neighbourhoods' and thereby limits

$$
\lim _{x \rightarrow \infty} f(x)=c \hat{=} \quad \text { filterlim } f \text { (nhds } c \text {) at_top }
$$

filterlim $f F G=$ filtermap $f G \leq F$
' $f(x)$ goes to F as as $x \rightarrow G$ iff neighbourhood G mapped with f is contained in neighbourhood F.

Asymptotics in Isabelle

Filters to describe 'neighbourhoods' and thereby limits

$$
\lim _{x \rightarrow \infty} f(x)=c \hat{=} \text { filterlim } f \text { (nhds } c \text {) at_top }
$$

filterlim $f F G=$ filtermap $f G \leq F$
' $f(x)$ goes to F as as $x \rightarrow G$ iff neighbourhood G mapped with f is contained in neighbourhood F.

Filters also make it possible to say ' $P(x)$ holds for all x sufficiently big / close to x_{0}.'

Asymptotics in Isabelle

Landau symbols to relate functions w.r.t. asymptotic behaviour

Asymptotics in Isabelle

Landau symbols to relate functions w.r.t. asymptotic behaviour

$$
(\lambda x . x) \in O(\lambda x . x * \ln x)
$$

Asymptotics in Isabelle

Landau symbols to relate functions w.r.t. asymptotic behaviour

$$
\begin{aligned}
(\lambda x . x) & \in O(\lambda x . x * \ln x) \\
\left(\lambda x \cdot x^{2}\right) & \in O[\text { at } 0](\lambda x . x)
\end{aligned}
$$

Asymptotics in Isabelle

Landau symbols to relate functions w.r.t. asymptotic behaviour

$$
\begin{aligned}
(\lambda x \cdot x) & \in O(\lambda x . x * \ln x) \\
\left(\lambda x \cdot x^{2}\right) & \in O[\text { at } 0](\lambda x . x)
\end{aligned}
$$

What does 'QuickSort needs $O\left(|x s|^{2}\right)$ comparisons' mean?

Asymptotics in Isabelle

Landau symbols to relate functions w.r.t. asymptotic behaviour

$$
\begin{aligned}
(\lambda x . x) & \in O(\lambda x . x * \ln x) \\
\left(\lambda x . x^{2}\right) & \in O[\text { at } 0](\lambda x . x)
\end{aligned}
$$

What does 'QuickSort needs $O\left(|x s|^{2}\right)$ comparisons' mean?
qs_cost $\in O[$ length going_to at_top $]\left(\lambda x s\right.$. $\left.(\text { length } x s)^{2}\right)$

Asymptotics in Isabelle

- Some automation to do 'obvious' simplifications

Asymptotics in Isabelle

- Some automation to do 'obvious' simplifications

$$
\text { if } g \in o(f): \quad O(\lambda x \cdot f x+g x) \rightsquigarrow O(f)
$$

Asymptotics in Isabelle

- Some automation to do 'obvious' simplifications

$$
\text { if } g \in o(f): \quad O(\lambda x . f x+g x) \quad \rightsquigarrow \quad O(f)
$$

$(\lambda x . f x * h x) \in O(\lambda x . g x * h x) \quad \rightsquigarrow \quad f \in O(g)$

Asymptotics in Isabelle

- Some automation to do 'obvious' simplifications

$$
\text { if } g \in o(f): \quad O(\lambda x . f x+g x) \quad \rightsquigarrow O(f)
$$

$(\lambda x . f x * h x) \in O(\lambda x . g x * h x) \rightsquigarrow f \in O(g)$
$\left(\lambda x \cdot x^{a} *(\ln x)^{b}\right) \in O\left(\lambda x \cdot x^{c} *(\ln x)^{d}\right) \rightsquigarrow$

$$
a<c \vee(a=c \wedge b \leq d)
$$

Asymptotics in Isabelle

- Some automation to do 'obvious' simplifications

$$
\text { if } g \in o(f): \quad O(\lambda x . f x+g x) \quad \rightsquigarrow O(f)
$$

$(\lambda x . f x * h x) \in O(\lambda x . g x * h x) \rightsquigarrow f \in O(g)$
$\left(\lambda x \cdot x^{a} *(\ln x)^{b}\right) \in O\left(\lambda x \cdot x^{c} *(\ln x)^{d}\right) \rightsquigarrow$

$$
a<c \vee(a=c \wedge b \leq d)
$$

Things like $(\lambda x .2 * x+x * \ln \ln x) \in O(\lambda x . x * \ln x)$ get proven automatically.

Automating Asymptotics

Problem: Asymptotics in Isabelle are ugly to prove!

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra-Bazzi

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left(1-\frac{1}{b \log ^{1+\varepsilon} x}\right)^{p}\left(1+\frac{1}{\log ^{\varepsilon / 2}\left(b x+\frac{x}{\log ^{1+\varepsilon} x}\right)}\right)- \\
\left(1+\frac{1}{\log ^{\varepsilon / 2} x}\right)=0^{+}
\end{gathered}
$$

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra-Bazzi

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left(1-\frac{1}{b \log ^{1+\varepsilon} x}\right)^{p}\left(1+\frac{1}{\log ^{\varepsilon / 2}\left(b x+\frac{x}{\log ^{1+\varepsilon} x}\right)}\right)- \\
\left(1+\frac{1}{\log ^{\varepsilon / 2} x}\right)=0^{+}
\end{gathered}
$$

Original author: ‘Trivial, just Taylor-expand it!'

Problem: Asymptotics in Isabelle are ugly to prove!

Example: Lemma required for Akra-Bazzi

$$
\begin{gathered}
\lim _{x \rightarrow \infty}\left(1-\frac{1}{b \log ^{1+\varepsilon} x}\right)^{p}\left(1+\frac{1}{\log ^{\varepsilon / 2}\left(b x+\frac{x}{\log ^{1+\varepsilon} x}\right)}\right)- \\
\left(1+\frac{1}{\log ^{\varepsilon / 2} x}\right)=0^{+}
\end{gathered}
$$

Original author: ‘Trivial, just Taylor-expand it!' In Isabelle: 700 lines of messy proofs

lemma akra_bazzi_aux:

filterlim

$$
\begin{aligned}
& \left(\lambda x \cdot\left(1-1 /\left(b * \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge} p\right) *\right. \\
& \quad\left(1+\ln \left(b * x+x / \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge}(-\varepsilon / 2)\right)- \\
& \left.\quad\left(1+\ln x^{\wedge}(-\varepsilon / 2)\right)\right) \\
& \text { (at_right 0) at_top }
\end{aligned}
$$

lemma akra_bazzi_aux:

filterlim
$\left(\lambda x .\left(1-1 /\left(b * \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge} p\right) *\right.$
$\left(1+\ln \left(b * x+x / \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge}(-\varepsilon / 2)\right)-$
$\left.\left(1+\ln x^{\wedge}(-\varepsilon / 2)\right)\right)$
(at_right 0) at_top

by magic

lemma akra_bazzi_aux:

filterlim

```
    \(\left(\lambda x .\left(1-1 /\left(b * \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge} p\right) *\right.\)
            \(\left(1+\ln \left(b * x+x / \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge}(-\varepsilon / 2)\right)-\)
        \(\left.\left(1+\ln x^{\wedge}(-\varepsilon / 2)\right)\right)\)
    (at_right 0) at_top
by magic
```

This is what we would like to have.

lemma akra_bazzi_aux:

filterlim

$$
\begin{aligned}
& \quad\left(\lambda x \cdot\left(1-1 /\left(b * \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge} p\right) *\right. \\
& \quad\left(1+\ln \left(b * x+x / \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge}(-\varepsilon / 2)\right)- \\
& \left.\quad\left(1+\ln x^{\wedge}(-\varepsilon / 2)\right)\right) \\
& \quad(\text { at_right } 0) \text { at_top } \\
& \text { by magic }
\end{aligned}
$$

This is what we would like to have.
Computer Algebra Systems can do this (sort of) So why can't we?

Asymptotic Expansions

Related Work

- Asymptotic Expansions of exp-log Functions by Richardson, Salvy, Shackell, van der Hoeven
- On Computing Limits in a Symbolic Manipulation System by Gruntz

Asymptotic Expansions

For $x \rightarrow \infty$, we have:

$$
\begin{aligned}
& e^{1 / x} \sim 1+x^{-1}+\frac{1}{2} x^{-2}+\frac{1}{6} x^{-3}+\ldots \\
& \frac{1}{1+x^{-1}} \sim 1-x^{-1}+x^{-2}-x^{-3}+\ldots
\end{aligned}
$$

Asymptotic Expansions

For $x \rightarrow \infty$, we have:

$$
\begin{aligned}
& e^{1 / x} \sim 1+x^{-1}+\frac{1}{2} x^{-2}+\frac{1}{6} x^{-3}+\ldots \\
& \frac{1}{1+x^{-1}} \sim 1-x^{-1}+x^{-2}-x^{-3}+\ldots
\end{aligned}
$$

This means: Cutting off $f(x) \sim a_{0}(x)+a_{1}(x)+\ldots$ at term a_{n} yields error $O\left(a_{n+1}(x)\right)$.

Asymptotic Expansions

For $x \rightarrow \infty$, we have:

$$
\begin{aligned}
& e^{1 / x} \sim 1+x^{-1}+\frac{1}{2} x^{-2}+\frac{1}{6} x^{-3}+\ldots \\
& \frac{1}{1+x^{-1}} \sim 1-x^{-1}+x^{-2}-x^{-3}+\ldots
\end{aligned}
$$

This means: Cutting off $f(x) \sim a_{0}(x)+a_{1}(x)+\ldots$ at term a_{n} yields error $O\left(a_{n+1}(x)\right)$.

Expansions contain the full asymptotic information.

Asymptotic Expansions

For $x \rightarrow \infty$, we have:

$$
\begin{aligned}
& e^{1 / x} \sim 1+x^{-1}+\frac{1}{2} x^{-2}+\frac{1}{6} x^{-3}+\ldots \\
& \frac{1}{1+x^{-1}} \sim 1-x^{-1}+x^{-2}-x^{-3}+\ldots
\end{aligned}
$$

This means: Cutting off $f(x) \sim a_{0}(x)+a_{1}(x)+\ldots$ at term a_{n} yields error $O\left(a_{n+1}(x)\right)$.

Expansions contain the full asymptotic information.
They can be added/subtracted/multiplied/divided.

Asymptotic Expansions

For $x \rightarrow \infty$, we have:

$$
\begin{aligned}
& e^{1 / x} \sim 1+x^{-1}+\frac{1}{2} x^{-2}+\frac{1}{6} x^{-3}+\ldots \\
& \frac{1}{1+x^{-1}} \sim 1-x^{-1}+x^{-2}-x^{-3}+\ldots
\end{aligned}
$$

This means: Cutting off $f(x) \sim a_{0}(x)+a_{1}(x)+\ldots$ at term a_{n} yields error $O\left(a_{n+1}(x)\right)$.

Expansions contain the full asymptotic information.
They can be added/subtracted/multiplied/divided.
Limits can simply be 'read off'

Asymptotic Expansions

今ิ
Not all functions have such easy expansions!
e. g. $\exp ($ at $\pm \infty)$ and $\ln ($ at $\infty, 0)$

Asymptotic Expansions

Not all functions have such easy expansions!
e. g. $\exp ($ at $\pm \infty)$ and $\ln ($ at $\infty, 0)$

Solution: later

Asymptotic Expansions

Not all functions have such easy expansions!
e. g. $\exp ($ at $\pm \infty)$ and $\ln ($ at $\infty, 0)$

Solution: later

For now, we only consider expansions of the form

$$
f(x) \sim c_{0} x^{e_{0}}+c_{1} x^{e_{1}}+\ldots
$$

for $x \rightarrow \infty$ where $e_{0}>e_{1}>\ldots$

Asymptotic Expansions

How can one do concrete operations on these expansions?

Asymptotic Expansions

How can one do concrete operations on these expansions? type $\operatorname{Exp}=(\mathbb{R} \times \mathbb{R})$ list

Asymptotic Expansions

How can one do concrete operations on these expansions? type $\operatorname{Exp}=(\mathbb{R} \times \mathbb{R})$ list negate $: \operatorname{Exp} \rightarrow \operatorname{Exp}$
negate $x s=[(-c, e) \mid(c, e) \leftarrow x s]$

Asymptotic Expansions

How can one do concrete operations on these expansions?

$$
\begin{aligned}
& \text { type } \operatorname{Exp}=(\mathbb{R} \times \mathbb{R}) \text { Ilist } \\
& \text { negate }: \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { negate } x s=[(-c, e) \mid(c, e) \leftarrow x s] \\
& (+): \operatorname{Exp} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& {[]+y s=y s} \\
& x s+[]=x s
\end{aligned}
$$

Asymptotic Expansions

How can one do concrete operations on these expansions?
type $\operatorname{Exp}=(\mathbb{R} \times \mathbb{R})$ list
negate $: \operatorname{Exp} \rightarrow \operatorname{Exp}$
negate $x s=[(-c, e) \mid(c, e) \leftarrow x s]$
$(+): \operatorname{Exp} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp}$
[] $+y s=y s$
$x s+[]=x s$
$\left(\left(c_{1}, e_{1}\right):: x s\right)+\left(\left(c_{2}, e_{2}\right):: y s\right)$
$e_{1}==e_{2}=\left(c_{1}+c_{2}, e_{1}\right):: x s+y s$
$e_{1}<e_{2}=\left(c_{1}, e_{1}\right):: x s+\left(\left(c_{2}, e_{2}\right):: y s\right)$
$\mid e_{1}>e_{2}=\left(c_{2}, e_{2}\right)::\left(\left(c_{1}, e_{1}\right):: x s\right)+y s$

Asymptotic Expansions - Multiplication

Multiplication with 'atomic' factor $c^{\prime} x^{e^{\prime}}$:

$$
\begin{aligned}
& \text { scale }: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { scale } c^{\prime} e^{\prime} x s=\left[\left(c * c^{\prime}, e+e^{\prime}\right) \mid(c, e) \leftarrow x s\right]
\end{aligned}
$$

Asymptotic Expansions - Multiplication

Multiplication with 'atomic' factor $c^{\prime} x^{e^{\prime}}$:

$$
\begin{aligned}
& \text { scale }: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { scale } c^{\prime} e^{\prime} x s=\left[\left(c * c^{\prime}, e+e^{\prime}\right) \mid(c, e) \leftarrow x s\right]
\end{aligned}
$$

Multiplication of two expansions:

$$
\begin{aligned}
& (*): \operatorname{Exp} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& x s *[]=[] \\
& {[] * y s=[]}
\end{aligned}
$$

Asymptotic Expansions - Multiplication

Multiplication with 'atomic' factor $c^{\prime} x^{e^{\prime}}$:

$$
\begin{aligned}
& \text { scale }: \mathbb{R} \rightarrow \mathbb{R} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { scale } c^{\prime} e^{\prime} x s=\left[\left(c * c^{\prime}, e+e^{\prime}\right) \mid(c, e) \leftarrow x s\right]
\end{aligned}
$$

Multiplication of two expansions:

$$
\begin{aligned}
& (*): \operatorname{Exp} \rightarrow \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& x s *[]=[] \\
& {[] * y s=[]} \\
& \left(\left(c_{1}, e_{1}\right):: x s\right) *\left(\left(c_{2}, e_{2}\right):: y s\right)= \\
& \quad\left(c_{1} * c_{2}, e_{1}+e_{2}\right):: \text { scale } c_{1} e_{1} y s+x s *\left(\left(c_{2}, e_{2}\right):: y s\right)
\end{aligned}
$$

Asymptotic Expansions - Other operations

Reciprocal and some other things (sin, cos at finite points) can easily be handled by Taylor Expansion plus some tricks.

Asymptotic Expansions - Other operations

Reciprocal and some other things (sin, cos at finite points) can easily be handled by Taylor Expansion plus some tricks.

But: Remember: $\ln x$ and $\exp x$ have no power series expansion for $x \rightarrow \infty$!

Asymptotic Expansions - Other operations

Reciprocal and some other things (sin, cos at finite points) can easily be handled by Taylor Expansion plus some tricks.

But: Remember: $\ln x$ and $\exp x$ have no power series expansion for $x \rightarrow \infty$!

Asymptotic Expansions - Other operations

Solution: Allow not only powers of x, but products of powers of an asymptotic basis.

Asymptotic Expansions - Other operations

Solution: Allow not only powers of x, but products of powers of an asymptotic basis.
Example: $\left(e^{x}, x, \ln x\right)$ is an asymptotic basis and generates monomials $e^{a x} x^{b} \ln ^{c} x$

$$
e^{4 x}+2 x^{3} \ln x \triangleq[1 \cdot(4,0,0), 2 \cdot(0,3,1)]
$$

Asymptotic Expansions - Other operations

Solution: Allow not only powers of x, but products of powers of an asymptotic basis.
Example: $\left(e^{x}, x, \ln x\right)$ is an asymptotic basis and generates monomials $e^{a x} x^{b} \ln ^{c} x$

$$
e^{4 x}+2 x^{3} \ln x \triangleq[1 \cdot(4,0,0), 2 \cdot(0,3,1)]
$$

Alternative hierarchical view: Coefficients of an expansion w.r.t. basis b :: bs are functions, each of which has an expansion w.r.t. bs.

Asymptotic Expansions - Other operations

Solution: Allow not only powers of x, but products of powers of an asymptotic basis.
Example: $\left(e^{x}, x, \ln x\right)$ is an asymptotic basis and generates monomials $e^{a x} x^{b} \ln ^{c} x$

$$
e^{4 x}+2 x^{3} \ln x \triangleq[1 \cdot(4,0,0), 2 \cdot(0,3,1)]
$$

Alternative hierarchical view: Coefficients of an expansion w.r.t. basis b :: bs are functions, each of which has an expansion w.r.t. bs.

$$
e^{4 x}+2 x^{3} \ln x \triangleq[(4,(0,(0,1))),(0,(3,(1,2)))
$$

Asymptotic Expansions - Other operations

Reading off limits is still easy:

$$
f(x) \sim c \cdot b_{1}(x)^{e_{1}} \ldots b_{n}(x)^{e_{n}}+\ldots
$$

Asymptotic Expansions - Other operations

Reading off limits is still easy:

$$
f(x) \sim c \cdot b_{1}(x)^{e_{1}} \ldots b_{n}(x)^{e_{n}}+\ldots
$$

Just determine first non-zero e_{i} :

Asymptotic Expansions - Other operations

Reading off limits is still easy:

$$
f(x) \sim c \cdot b_{1}(x)^{e_{1}} \ldots b_{n}(x)^{e_{n}}+\ldots
$$

Just determine first non-zero e_{i} :

- Limit is 0 if $e_{i}<0$

Asymptotic Expansions - Other operations

Reading off limits is still easy:

$$
f(x) \sim c \cdot b_{1}(x)^{e_{1}} \ldots b_{n}(x)^{e_{n}}+\ldots
$$

Just determine first non-zero e_{i} :

- Limit is 0 if $e_{i}<0$
- Limit is $\operatorname{sgn}(c) \cdot \infty$ if $e_{i}>0$

Asymptotic Expansions - Other operations

Reading off limits is still easy:

$$
f(x) \sim c \cdot b_{1}(x)^{e_{1}} \ldots b_{n}(x)^{e_{n}}+\ldots
$$

Just determine first non-zero e_{i} :

- Limit is 0 if $e_{i}<0$
- Limit is $\operatorname{sgn}(c) \cdot \infty$ if $e_{i}>0$
- Limit is c if all $e_{i}=0$

Asymptotic Expansions - Other operations

Before:

$$
\begin{aligned}
& \text { type } \operatorname{Exp}=(\mathbb{R} \times \mathbb{R}) \text { llist } \\
& \text { negate }: \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { negate } x s=[(-c, e) \mid(c, e) \leftarrow x s]
\end{aligned}
$$

Asymptotic Expansions - Other operations

Before:

$$
\begin{aligned}
& \text { type } \operatorname{Exp}=(\mathbb{R} \times \mathbb{R}) \text { llist } \\
& \text { negate }: \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { negate } x s=[(-c, e) \mid(c, e) \leftarrow x s]
\end{aligned}
$$

Now:
type Basis $=(\mathbb{R} \rightarrow \mathbb{R})$ list

Asymptotic Expansions - Other operations

Before:

$$
\begin{aligned}
& \text { type } \operatorname{Exp}=(\mathbb{R} \times \mathbb{R}) \text { llist } \\
& \text { negate }: \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { negate } x s=[(-c, e) \mid(c, e) \leftarrow x s]
\end{aligned}
$$

Now:
type Basis $=(\mathbb{R} \rightarrow \mathbb{R})$ list datatype Exp : Basis \rightarrow Type where

Const : $\mathbb{R} \rightarrow \operatorname{Exp}[]$
$\operatorname{Exp}:(\operatorname{Exp} b s \times \mathbb{R})$ llist $\rightarrow \operatorname{Exp}(b:: b s)$

Asymptotic Expansions - Other operations

Before:

$$
\begin{aligned}
& \text { type } \operatorname{Exp}=(\mathbb{R} \times \mathbb{R}) \text { llist } \\
& \text { negate }: \operatorname{Exp} \rightarrow \operatorname{Exp} \\
& \text { negate } x s=[(-c, e) \mid(c, e) \leftarrow x s]
\end{aligned}
$$

Now:
type Basis $=(\mathbb{R} \rightarrow \mathbb{R})$ list
datatype Exp : Basis \rightarrow Type where
Const : $\mathbb{R} \rightarrow \operatorname{Exp}[]$
$\operatorname{Exp}:(\operatorname{Exp} b s \times \mathbb{R})$ llist $\rightarrow \operatorname{Exp}(b:: b s)$
negate : Exp bs $\rightarrow \operatorname{Exp} b s$
negate (Const c) $=-c$

Asymptotic Expansions - Other operations

Before:
type $\operatorname{Exp}=(\mathbb{R} \times \mathbb{R})$ list
negate $: \operatorname{Exp} \rightarrow \operatorname{Exp}$
negate $x s=[(-c, e) \mid(c, e) \leftarrow x s]$
Now:
type Basis $=(\mathbb{R} \rightarrow \mathbb{R})$ list
datatype Exp : Basis \rightarrow Type where
Const : $\mathbb{R} \rightarrow \operatorname{Exp}[]$
$\operatorname{Exp}:(\operatorname{Exp} b s \times \mathbb{R})$ llist $\rightarrow \operatorname{Exp}(b:: b s)$
negate : Exp bs $\rightarrow \operatorname{Exp} b s$
negate (Const c) $=-c$
negate $(\operatorname{Exp} x s)=\operatorname{Exp}[($ negate $c, e) \mid(c, e) \leftarrow x s]$

Asymptotic Expansions - Exponential and Logarithm

Basically: Just expand and add new basis elements whenever that is not possible.

Asymptotic Expansions - Exponential and Logarithm

Basically: Just expand and add new basis elements whenever that is not possible.

Tricky aspects:

- Lots of case distinctions

Asymptotic Expansions - Exponential and Logarithm

Basically: Just expand and add new basis elements whenever that is not possible.

Tricky aspects:

- Lots of case distinctions
- Can introduce ugly new basis elements like $\exp (x+1 / x)$

Asymptotic Expansions - Exponential and Logarithm

Basically: Just expand and add new basis elements whenever that is not possible.

Tricky aspects:

- Lots of case distinctions
- Can introduce ugly new basis elements like $\exp (x+1 / x)$
- Lots of opportunities for implementation bugs

Asymptotic Expansions - Exponential and Logarithm

Basically: Just expand and add new basis elements whenever that is not possible.

Tricky aspects:

- Lots of case distinctions
- Can introduce ugly new basis elements like $\exp (x+1 / x)$
- Lots of opportunities for implementation bugs
- Luckily, the Isabelle kernel caught them, of course. :)

Proof method

Skipping a lot of magic: We can automatically prove statements of the form

- $f(x) \longrightarrow c$
- $f(x) \sim g(x)$
- $f(x) \in L(g(x))$ for any Landau symbol L as $x \rightarrow I$ for $I \in \mathbb{R} \cup\{ \pm \infty\}$

Proof method

Skipping a lot of magic: We can automatically prove statements of the form

- $f(x) \longrightarrow c$
- $f(x) \sim g(x)$
- $f(x) \in L(g(x))$ for any Landau symbol L as $x \rightarrow I$ for $I \in \mathbb{R} \cup\{ \pm \infty\}$
f and g can be built from $+-\cdot / \ln \exp \min \max ^{\wedge}|\cdot| \sqrt[n]{\cdot}$ without restrictions

Proof method

Skipping a lot of magic: We can automatically prove statements of the form

- $f(x) \longrightarrow c$
- $f(x) \sim g(x)$
- $f(x) \in L(g(x))$ for any Landau symbol L as $x \rightarrow I$ for $I \in \mathbb{R} \cup\{ \pm \infty\}$
f and g can be built from $+-\cdot / \ln \exp \min \max ^{\wedge}|\cdot| \sqrt[n]{\cdot}$ without restrictions
\sin , \cos , \tan at finite points also possible.

Proof method

Example

lemma $\left(\lambda n .(1+1 / n)^{\wedge} n\right) \longrightarrow \exp 1$
by exp_log_asymptotics

Proof method

Example

lemma $\left(\lambda n .(1+1 / n)^{\wedge} n\right) \longrightarrow \exp 1$ by exp_log_asymptotics

Example

lemma $\left(\left(\lambda x \cdot(1+y / x)^{\wedge} x\right) \longrightarrow \exp y\right)$ at_top proof (cases $y=0$)
case False
thus ?thesis by exp_log_asymptotics qed simp_all

Example

lemma

assumes $c>1$ and $k>0$
shows $\left(\lambda n . n^{\wedge} k\right) \in o\left(\lambda n . c^{\wedge} n\right)$
using assms by exp_log_asymptotics

Example

lemma
assumes $c>1$ and $k>0$
shows $\left(\lambda n . n^{\wedge} k\right) \in o\left(\lambda n . c^{\wedge} n\right)$
using assms by exp_log_asymptotics

Example

lemma akra_bazzi_aux:
assumes $b \in\{0<. .<1\}$ and $\varepsilon>0$
shows filterlim (λx.

$$
\begin{aligned}
& \quad\left(1-H /\left(b * \ln x^{\wedge}(1+\varepsilon)\right)\right)^{\wedge} p * \\
& \left(1+\ln \left(b * x+H * x / \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge}(-\varepsilon / 2)\right)- \\
& \left.\left(1+\ln x^{\wedge}(-\varepsilon / 2)\right)\right) \\
& \text { (at_right 0) at_top }
\end{aligned}
$$

Example

lemma

assumes $c>1$ and $k>0$
shows $\left(\lambda n . n^{\wedge} k\right) \in o\left(\lambda n . c^{\wedge} n\right)$
using assms by exp_log_asymptotics

Example

lemma akra_bazzi_aux:
assumes $b \in\{0<. .<1\}$ and $\varepsilon>0$
shows filterlim (λx.

$$
\begin{aligned}
& \left(1-H /\left(b * \ln x^{\wedge}(1+\varepsilon)\right)\right)^{\wedge} p * \\
& \left(1+\ln \left(b * x+H * x / \ln x^{\wedge}(1+\varepsilon)\right)^{\wedge}(-\varepsilon / 2)\right)- \\
& \left.\left(1+\ln x^{\wedge}(-\varepsilon / 2)\right)\right) \\
& \text { (at_right 0) at_top }
\end{aligned}
$$

by (exp_log_asymptotics simp: mult_neg_pos)

Discussion

What works well:

- Surprisingly, all examples I tried take no more than a few seconds

Discussion

What works well:

- Surprisingly, all examples I tried take no more than a few seconds
- Algorithm copes very well with free variables that don't affect result

Discussion

What works well:

- Surprisingly, all examples I tried take no more than a few seconds
- Algorithm copes very well with free variables that don't affect result

Problems:

- If many cancellations occur, performance gets very bad

Discussion

What works well:

- Surprisingly, all examples I tried take no more than a few seconds
- Algorithm copes very well with free variables that don't affect result

Problems:

- If many cancellations occur, performance gets very bad
- Getting zeroness/sign tests to work can be annoying

Discussion

What works well:

- Surprisingly, all examples I tried take no more than a few seconds
- Algorithm copes very well with free variables that don't affect result

Problems:

- If many cancellations occur, performance gets very bad
- Getting zeroness/sign tests to work can be annoying
- Case distinctions have to be done manually

Discussion

- 5000 lines of Isabelle theory

Discussion

- 5000 lines of Isabelle theory
- 3000 lines of (untrusted) ML code

Discussion

- 5000 lines of Isabelle theory
- 3000 lines of (untrusted) ML code
- About 5 months of work so far

Discussion

- 5000 lines of Isabelle theory
- 3000 lines of (untrusted) ML code
- About 5 months of work so far
- Implementation was tricky to get right

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996 (is now part of Mathematica)

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996 (is now part of Mathematica)

Back then, all CASs gave wrong results for many of his test cases!

Comparison to CASs

Similar algorithm by Gruntz in Maple in 1996 (is now part of Mathematica)

Back then, all CASs gave wrong results for many of his test cases!

Nowadays, most of them work

Comparison to CASs

23 test cases lie in the fragment we support

Comparison to CASs

23 test cases lie in the fragment we support All of them work automatically

Comparison to CASs

23 test cases lie in the fragment we support All of them work automatically
Maximum time: 1.726 s ; Median: 0.311 s

Comparison to CASs

23 test cases lie in the fragment we support All of them work automatically
Maximum time: 1.726 s ; Median: 0.311 s
Mathematica and Maple do all of them
very quickly and correctly

Comparison to CASs

23 test cases lie in the fragment we support All of them work automatically
Maximum time: 1.726 s ; Median: 0.311 s
Mathematica and Maple do all of them very quickly and correctly

Maxima, Sage, and SymPy fail on some of them

Comparison to CASs

23 test cases lie in the fragment we support All of them work automatically
Maximum time: 1.726 s ; Median: 0.311 s
Mathematica and Maple do all of them very quickly and correctly

Maxima, Sage, and SymPy fail on some of them
Maxima and Sage take very long for some of them and give wrong result for this:

$$
\exp \left(\frac{\log \log \left(x+e^{\log x \log \log x}\right)}{\log \log \log \left(e^{x}+x+\ln x\right)}\right) \longrightarrow e
$$

Comparison to CASs

How well are we doing?
Surprisingly, we are not that much slower (sometimes even faster) than Maple/Mathematica on many examples

Comparison to CASs

How well are we doing?
Surprisingly, we are not that much slower (sometimes even faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra-Bazzi example as soon as variables are involved

Comparison to CASs

How well are we doing?
Surprisingly, we are not that much slower (sometimes even faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra-Bazzi example as soon as variables are involved

In general, of course, Mathematica/Maple are much better in both scope and speed

Comparison to CASs

How well are we doing?
Surprisingly, we are not that much slower (sometimes even faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra-Bazzi example as soon as variables are involved

In general, of course, Mathematica/Maple are much better in both scope and speed

But: you have to trust the implementations.

Comparison to CASs

How well are we doing?
Surprisingly, we are not that much slower (sometimes even faster) than Maple/Mathematica on many examples

Also: All CASs seem to fail on the Akra-Bazzi example as soon as variables are involved

In general, of course, Mathematica/Maple are much better in both scope and speed

But: you have to trust the implementations. Isabelle still isn't a CAS - but we're getting there.

Future Work

- Incomplete support for $\Gamma, \psi^{(n)}, \arctan$

Future Work

- Incomplete support for $\Gamma, \psi^{(n)}$, arctan
- Cannot handle oscillating functions

Future Work

- Incomplete support for $\Gamma, \psi^{(n)}$, arctan
- Cannot handle oscillating functions
- User interaction for zeroness tests could be improved

Questions? Demo?

