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Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Table of Contents

Introduction

Framework

Rank-Nullity Theorem

Gauss-Jordan

QR Decomposition

Echelon and Hermite Normal Form

Univalent Foundations

Conclusions

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Table of Contents

Introduction

Framework

Rank-Nullity Theorem

Gauss-Jordan

QR Decomposition

Echelon and Hermite Normal Form

Univalent Foundations

Conclusions

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Motivation

Software development is error-prone
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Introduction Motivation

Software Verification

It is necessary to verify software somehow in order to minimise possible
faults

I Software testing is one of the major software verification techniques
used in practice

I Testing can never be complete, infeasible for critical systems

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

— Edsger W. Dijkstra

I Formal methods refer to “mathematically rigorous techniques and
tools for the specification, design and verification of software and
hardware systems”
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Introduction Motivation

Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence
of inferences from the axioms, each inference made according to one of the
stated rules

Tedious and requires too much effort: in 1910 Whitehead and Russell for-
mally proved 1 + 1 = 2 after 379 pages of work

“My intellect never quite recovered. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.”

— Bertrand Russell

I An interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration
(Isabelle, Coq, ACL2,. . . )

I For better or worse, “the machine magnifies competence, but it also
magnifies incompetence. . . ”

— Lawrence C. Paulson

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Motivation

Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence
of inferences from the axioms, each inference made according to one of the
stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell for-
mally proved 1 + 1 = 2 after 379 pages of work

“My intellect never quite recovered. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.”

— Bertrand Russell

I An interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration
(Isabelle, Coq, ACL2,. . . )

I For better or worse, “the machine magnifies competence, but it also
magnifies incompetence. . . ”

— Lawrence C. Paulson

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Motivation

Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence
of inferences from the axioms, each inference made according to one of the
stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell for-
mally proved 1 + 1 = 2 after 379 pages of work

“My intellect never quite recovered. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.”

— Bertrand Russell

I An interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration
(Isabelle, Coq, ACL2,. . . )

I For better or worse, “the machine magnifies competence, but it also
magnifies incompetence. . . ”

— Lawrence C. Paulson

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Motivation

Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence
of inferences from the axioms, each inference made according to one of the
stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell for-
mally proved 1 + 1 = 2 after 379 pages of work

“My intellect never quite recovered. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.”

— Bertrand Russell

I An interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration
(Isabelle, Coq, ACL2,. . . )

I For better or worse, “the machine magnifies competence, but it also
magnifies incompetence. . . ”

— Lawrence C. Paulson

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Motivation

Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence
of inferences from the axioms, each inference made according to one of the
stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell for-
mally proved 1 + 1 = 2 after 379 pages of work

“My intellect never quite recovered. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.”

— Bertrand Russell

I An interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration
(Isabelle, Coq, ACL2,. . . )

I For better or worse, “the machine magnifies competence, but it also
magnifies incompetence. . . ”

— Lawrence C. Paulson

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Motivation

Formalisation of mathematics

A mathematical proof is rigorous when it has been written out as a sequence
of inferences from the axioms, each inference made according to one of the
stated rules
Tedious and requires too much effort: in 1910 Whitehead and Russell for-
mally proved 1 + 1 = 2 after 379 pages of work

“My intellect never quite recovered. I have been ever since definitely less
capable of dealing with difficult abstractions than I was before.”

— Bertrand Russell

I An interactive theorem prover is a software tool to assist with the
development of formal proofs by human-machine collaboration
(Isabelle, Coq, ACL2,. . . )

I For better or worse, “the machine magnifies competence, but it also
magnifies incompetence. . . ” — Lawrence C. Paulson

Jose Divasón (UR) PhD Defense 20th June 2016



Introduction Goals

What

Formalisation of Linear Algebra algorithms

Why

Generation of verified algorithms usable in practice

How
I Using an interactive theorem prover

I Framework to formalise, execute, refine and connect Linear Algebra
algorithms with their mathematical meaning

I Apply it to formalise four well-known algorithms and their applications
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Introduction Logical Toolkit

Toolkit

I Proof assistant: Isabelle (L. Paulson, T. Nipkow, M. Wenzel)

I Underlying logic: Higher-order logic (HOL) + type classes

I Additional libraries: HOL Multivariate Analysis (HMA, J. Harrison)

I Code generation infrastructure (F. Haftmann)

I Proof language: Intelligible semi-automated reasoning (Isar,
M. Wenzel)

I Execution environments: GH(askell)C, PolyML (D. Matthews) and
MLton
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Introduction Logical Toolkit

Isabelle

I Isabelle is an interactive theorem prover created by Paulson in 1986

I Worldwide user community

I Flyspeck (the formal proof of the Kepler conjecture) and seL4 (an
operating-system kernel)

I Isabelle is a generic theorem prover: it has been instantiated to
support different object-logics

I The most widespread object-logic supported by Isabelle is higher-order
logic (HOL)

HOL = Functional Programming + Logic
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Introduction Logical Toolkit

HMA - Multivariate Analysis session

I Our formalisations are based on the HOL Multivariate Analysis session

I Adequate vector and matrix representation from the formalisation
point of view

typedef (α,β) vec = UNIV :: ((β::finite) ⇒ α) set
morphisms vec−nth vec−lambda ..

I Type System vs Logic
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Introduction Logical Toolkit

State of the Art (January 2013)

I Isabelle/HOL has a number of Libraries that deal with Algebra and
Multivariate Analysis

I Execution was not explored (either in Isabelle or HOL Light)

I Linear Algebra algorithms had barely been implemented

I Example:

T. Nipkow. Gauss-Jordan Elimination for Matrices Represented as Functions.

Archive of Formal Proofs (2011)
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Framework Executable Linear Algebra

Framework

Framework to formalise, execute, refine and connect Linear Algebra algo-
rithms with their mathematical meaning

I Formalise: Definition of elementary matrix operations

definition interchange-rows :: ′aˆ ′nˆ ′m⇒ ′m⇒ ′m⇒ ′aˆ ′nˆ ′m
where interchange-rows A a b = (χ i j. if i=a then A $ b $ j else if i=b

then A $ a $ j else A $ i $ j)

I Execution and refinement: HMA matrix representation (vec) is
refined to (efficient) executable representations (functions, immutable
arrays). Code is exported to functional programming languages

I Connection:

lemma linear bij rank eq ncols:
fixes f:: ′a::fieldˆn::mod type ⇒ ′aˆn
assumes linear (op ∗s) (op ∗s) f
shows bij f ←→ rank (matrix f) = ncols (matrix f)
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Framework Executable Linear Algebra

Data refinement consists of replacing an abstract (probably non-executable)
datatype by a more concrete (executable) one

Refinement

Abstract representation

Abstract definitions Proof

Concrete representation Concrete definitions Execution

Two refinements have been carried out so that operations over the abstract
type vec can be executed

1. From vec to function over finite types

2. From vec to iarray
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Framework Second refinement

2. From vec to iarray

In order to achieve better performance, a refinement has been developed
using immutable arrays

I There exists a datatype in the Isabelle library called iarray which
represents immutable arrays

I iarray is implemented in both SML (Vector structure) and Haskell
(IArray class)

I We have refined vec elements and operations to iarray ones (proving
the corresponding morphisms)

Features of this refinement

1. Code can be generated to both SML and Haskell

2. Improved performance
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Framework Serialisations

Serialisations

I Isabelle datatypes are mapped to the corresponding implementation in
the target languages

I Need to be trusted

Isabelle/HOL SML Haskell

iarray Vector.vector IArray.Array
rat IntInf.int / IntInf.int Rational
real Real.real Double
bit Bool.bool Bool
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Rank-Nullity Theorem Rank-Nullity Theorem

First part of the Fundamental Theorem of Linear Algebra

Theorem (The Rank-Nullity Theorem)

Let τ ∈ L (V ,W ), where L (V ,W ) is the set of linear maps between a
finite-dimensional vector space V and a vector space W ; then

dim V = dim(ker τ) + dim(im τ)

where ker τ ⊆ V and im τ ⊆W

Reinterpretation with matrices

V ∼= Fn, W ∼= Fm, τ = A ∈M(m,n)(F), im τ = C(A), ker τ = N(A)
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Rank-Nullity Theorem Rank-Nullity Theorem

Fn

row space

{x . x = AT y}

dim r

nullspace

{x .Ax = 0}

dim(n − r)

Fm

column space

{y . y = Ax}

dim r

left nullspace

{y .AT y = 0}

dim(m − r)

A ∈M(m,n)(F)

AT ∈M(n,m)(F)

Figure : Bases of the four Fundamental subspaces
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Rank-Nullity Theorem Rank-Nullity Theorem

Isabelle statement

I Linear map statement

theorem rank-nullity-theorem:
shows V.dimension = V.dim {x. f x = 0} + W.dim (range f)

I Matrix statement

theorem rank-nullity-theorem-matrices:
fixes A::fieldˆ ′cols::{wellorder}ˆ ′rows
shows ncols A = vec.dim (null-space A) + vec.dim (col-space A)

J. Divasón and J. Aransay. Rank-Nullity Theorem in Linear Algebra. Archive of

Formal Proofs (2013)
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Gauss-Jordan The Gauss-Jordan algorithm

From theorems to algorithms

I Gauss-Jordan elimination provides a direct way to compute the
reduced row echelon form (rref) by means of elementary row
operations over A

Gauss-Jordan example

A =


1 −2 1 −3 0
3 −6 2 −7 0
5 −1 3 2 5
0 7 4 5 1
3 −6 2 −7 0

 // A =


1 0 0 0 3
0 1 0 0 2
0 0 1 0 −2
0 0 0 1 −1
0 0 0 0 0



dim(C(A)) = 4
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Gauss-Jordan The Gauss-Jordan algorithm

ααα ˆcols ˆrows Gauss Jordan Isabelle

Abstract representation //

Projection
��

Abstract definitions

Code lemmas
��

// Proof

Concrete representation // Concrete definitions // Execution

ααα iarray iarray Gauss Jordan iarrays Isabelle,SML,Haskell

Jose Divasón (UR) PhD Defense 20th June 2016



Gauss-Jordan The Gauss-Jordan algorithm

Generalisations

From HMA and the reals to fields
lemma rank-Gauss-Jordan-real:

fixes A::realˆ ′n::{mod-type}ˆ ′m::{mod-type}
shows rank A = rank (Gauss-Jordan A)

by (metis Gauss-Jordan crk-is-preserved rank-col-rank)

lemma rank-Gauss-Jordan:
fixes A:: ′a::{field}ˆ ′n::{mod-type}ˆ ′m::{mod-type}
shows rank A = rank (Gauss-Jordan A)

by (metis Gauss-Jordan-def invertible-Gauss-Jordan-up-to-k
row-rank-eq-col-rank rank-def crk-is-preserved)

J. Aransay and J. Divasón. Generalizing a Mathematical Analysis library in Isabelle/HOL.

Proceedings of the 7th NASA Formal Methods Symposium (NFM 2015)
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Gauss-Jordan The Gauss-Jordan algorithm

The following computations can be performed by means of the Gauss-Jordan
algorithm

Gauss-Jordan algorithm applications

I Reduced row echelon form

I Ranks

I Determinants

I Inverses

I Dimensions and bases of the null space, left null space, column space
and row space

I Solution(s) of systems of linear equations

J. Divasón and J. Aransay. Gauss-Jordan Algorithm and Its Applications

Archive of Formal Proofs (2014)
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Gauss-Jordan Examples of Execution

Ranks

1 + i 1− i 0
2− i 1 + 3i 7 + 3i

3 2 + 2i 7 + 3i

 ∈M3×3(C)
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Gauss-Jordan Examples of Execution

Determinants

A =

1 1 0
0 1 1
1 0 1

 ∈M3×3(R)

A =

1 1 0
0 1 1
1 0 1

 ∈M3×3(Z2)

Jose Divasón (UR) PhD Defense 20th June 2016



Gauss-Jordan Examples of Execution

Determinants

A =

1 1 0
0 1 1
1 0 1

 ∈M3×3(R) A =

1 1 0
0 1 1
1 0 1

 ∈M3×3(Z2)
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Gauss-Jordan Examples of Execution

Inverse

A =

1 1 0
0 1 1
1 0 1

 ∈M3×3(R) inv(A) =

 1/2 −1/2 1/2
1/2 1/2 −1/2
−1/2 1/2 1/2


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Gauss-Jordan Examples of Execution
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A =

1 1 0
0 1 1
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Gauss-Jordan Examples of Execution

Bases and dimensions of fundamental subspaces
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Gauss-Jordan Examples of Execution

Solving a system of linear equations

x + y − 4z + 10t = 24
3x − 2y − 2z + 6t = 15


x
y
z
t

 =


63/5
57/5

0
0

 + α


2
2
1
0

 + β


−26/5
−24/5

0
1


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Gauss-Jordan Benchmarks

Benchmarks (using iarrays)

Size (n) Poly/ML GHC
100 0.04 0.36
200 0.25 2.25
300 0.85 9.09
400 2.01 17.17
500 3.90 32.56
600 6.16 56.39
800 15.96 131.73

1 000 32.08 255.84
1 200 62.33 453.57
1 400 97.16 715.87
1 600 139.70 1097.41
1 800 203.10 1609.72
2 000 284.28 2295.30

Table : Time to compute the rref of randomly generated Z2 matrices.
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Gauss-Jordan Benchmarks

Imperative vs. Declarative

Imperative version (HOL-Imp) Verified version (iarray)

Function Time perc. Function Time perc.
nth.fn 29.8% sub 33.4%
upd.fn.fn.fn 12.2% of fun 32.7%
IntInf.schckToInt64 12.1% IntInf.extdFromWord64 9.3%
make.fn 8.1% IntInf.schckToInt64 7.5%
plus nat.fn 7.9% row add iarray.fn 6.3%
. . . . . . . . . . . .

Total
9.42 seconds of CPU time 10.06 seconds of CPU time
(0.04 seconds of GC) (0.22 seconds of GC)

Table : Profiling of the imperative and verified versions of Gauss-Jordan on a
600× 600 matrix.
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Gauss-Jordan Benchmarks

C++ vs. Verified version

Matrix sizes C++ version Verified version
600× 600 01.33s. 06.16s.
1 000× 1 000 05.94s. 32.08s.
1 200× 1 200 10.28s. 62.33s.
1 400× 1 400 16.62s. 97.16s.

Table : C++ vs verified version of the Gauss-Jordan algorithm.

Both programs show a cubic performance, even if the verified version is
using immutable arrays

J. Aransay and J. Divasón. Formalization and execution of Linear Algebra: from theorems
to algorithms. Proceedings of the International Symposium on Logic-Based Program
Synthesis and Transformation: LOPSTR 2013

J. Aransay and J. Divasón. Formalisation in higher-order logic and code generation to
functional languages of the Gauss-Jordan algorithm. Journal of Functional Programming.
2015
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QR Decomposition

Introduction

Framework

Rank-Nullity Theorem

Gauss-Jordan

QR Decomposition

Echelon and Hermite Normal Form

Univalent Foundations

Conclusions
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QR Decomposition Mathematics

Theorem (Second Part of the Fundamental Theorem of Linear
Algebra)

Given a matrix A ∈ M(m,n)(R)

I In Rn, N(A) = C(AT )⊥ that is, the nullspace is the orthogonal
complement of the row space

I In Rm, N(AT ) = C(A)⊥, that is, the left nullspace is the orthogonal
complement of the column space
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QR Decomposition Mathematics

Second Part of the Fundamental Theorem of Linear Algebra
I theorem null-space-orthogonal-complement-row-space:

fixes A :: realˆ ′colsˆ ′rows
shows null-space A = orthogonal-complement (row-space A)

I theorem left-null-space-orthogonal-complement-col-space:
fixes A :: realˆ ′colsˆ ′rows
shows left-null-space A = orthogonal-complement (col-space A)

From mathematical results to algorithms

The Gram-Schmidt process allows us to compute the mentioned orthogonal
bases
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QR Decomposition QR Decomposition

QR Decomposition

Definition (QR Decomposition)

The QR decomposition of a full column rank matrix A ∈ Mn×m(R) is a pair
of matrices (Q,R) such that

1. A = QR

2. Q ∈ Mn×m(R) is a matrix whose columns are orthonormal vectors

3. R ∈ Mm×m(R) is upper triangular and invertible

Algorithm

1. Q = Apply Gram-Schmidt to the columns of A, normalise the vectors

2. Compute R as R = QT A
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QR Decomposition QR Decomposition

QR Decomposition

I We have formalised the previous algorithm in Isabelle, and refined it
to immutable arrays

I Computations can be carried out using either floats or (for suitable
inputs) symbolically

I 2700 vs. 11000 loc.
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QR Decomposition QR Decomposition

QR Decomposition

A︷ ︸︸ ︷1 2 6
9 4 2
0 0 4

 =

Q︷ ︸︸ ︷
√

82
82

9
√

82
82 0

9
√

82
82

−
√

82
82 0

0 0 1


R︷ ︸︸ ︷

√
82 19

√
82

41
12
√

82
41

0 7
√

82
41

26
√

82
41

0 0 4


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QR Decomposition Least Squares Approximation

Application: Least Squares Approximation

I Let us consider a system Ax = b without solution

I We can approximate the “solution” minimizing the error (least squares
approximation). That is, compute x̂ such that minimises || Ax̂ − b ||
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QR Decomposition Least Squares Approximation

row space = Rn

N(A) = 0

C(A) ⊆ Rm

left nullspace

b = p + e

p = Pb

e

best x̂

Ax = b

not solvable

Ax = b

Figure : The projection p = Ax̂ is the closest point to b in C(A)
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QR Decomposition Least Squares Approximation

Application: Least Squares Approximation

I We have formalised that x̂ = R−1QT b

I x̂ can be computed symbolically, R−1 is computed by means of the
Gauss-Jordan algorithm
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QR Decomposition Advantages over Gauss-Jordan

Advantages over Gauss-Jordan

I Both Gauss-Jordan and QR can be used to compute the least squares
approximation of linear systems

I QR has a substantial edge in precision, when applied to floating-point
matrices

Example of QR precision over the Hilbert matrix of dimension 6

Let

H6 =



1 1/2 1/3 1/4 1/5 1/6
1/2 1/3 1/4 1/5 1/6 1/7
1/3 1/4 1/5 1/6 1/7 1/8
1/4 1/5 1/6 1/7 1/8 1/9
1/5 1/6 1/7 1/8 1/9 1/10
1/6 1/7 1/8 1/9 1/10 1/11


and b =

(
1 0 0 0 0 5

)
in H6x = b. Do note that the determinant of

H6 is 1/186313420339200000 and its condition number greater than 107
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QR Decomposition Advantages over Gauss-Jordan

Advantages over Gauss-Jordan

Comparison of the approximations to H6x = b

I 1: Least squares approximation using arbitrary precision (QR or
Gauss-Jordan algorithm)

I 2: QR approximation using floating-point numbers

I 3: Gauss-Jordan approximation using floating-point numbers

1 : −13824 415170 −2907240 7754040 −8724240 3489948
2 : −13824.0 415170.0001 −2907240.0 7754040.001 −8724240.001 3489948.0
3 : −13808.6421 414731.7866 −2904277.468 7746340.301 −8715747.432 3486603.907

Jose Divasón (UR) PhD Defense 20th June 2016



QR Decomposition Benchmarks

Benchmarks

Size (n) Poly/ML (s.)

100 0.748
200 10.869
300 84.310
400 183.754

Table : Elapsed time (in seconds) to compute the QR decomposition of Hn with
floating-point precision

J. Divasón and J. Aransay. QR Decomposition. Archive of Formal Proofs. 2015

J. Aransay and J. Divasón. A formalisation in HOL of the Fundamental Theorem of Linear

Algebra and its application to the solution of the least squares problem. Journal of

Automated Reasoning. 2016

J. Aransay and J. Divasón. Verified Computer Linear Algebra. EACA 2016
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Echelon and Hermite Normal Form

Introduction

Framework

Rank-Nullity Theorem

Gauss-Jordan

QR Decomposition

Echelon and Hermite Normal Form

Univalent Foundations

Conclusions
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Echelon and Hermite Normal Form Description

Echelon Form

I Gauss-Jordan algorithm can only be applied to matrices whose
elements belong to a field. For more general rings, a different
algorithm must be used (involving gcd, Bézout coefficients. . . )

I We have formalised and refined an algorithm to compute the echelon
form of a matrix over Bézout domains
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Echelon and Hermite Normal Form Hierarchy
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Echelon and Hermite Normal Form Approach

I We have proven the correctness of the algorithm in Bézout domains,
where Bézout coefficients exist for every a, b, (i.e., ∃x y . ax + by = z ,
z ∈ Units), but a computable Bézout function might not exist

I Execution is guaranteed, at least, over Euclidean domains, where a
computable Bézout operation exists (it might be not unique)

I The echelon form algorithm is parametrised by a Bézout function

I Z and F [x ] are proven to be instances of Euclidean domains

I The following computations can be carried out in Euclidean domains

I Determinants
I Inverses
I Characteristic polynomial

I 5000 vs. 11000 loc
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Echelon and Hermite Normal Form Approach

Statement for Bézout domains:

theorem echelon-form-of-invertible:
fixes A:: ′a::{bezout-domain}ˆ ′cols::{mod-type}ˆ ′rows::{mod-type}
assumes is-bezout-ext bezout
shows ∃P. invertible P ∧ P ∗∗ A = echelon-form-of A bezout

∧ echelon-form (echelon-form-of A bezout)

Statement for Euclidean domains:

corollary echelon-form-of-euclidean-invertible:
fixes A:: ′a::{euclidean-ring}ˆ ′cols::{mod-type}ˆ ′rows::{mod-type}
shows ∃P. invertible P ∧ P∗∗A = (echelon-form-of A euclid-ext2)

∧ echelon-form (echelon-form-of A euclid-ext2)

J. Divasón and J. Aransay. Echelon Form. Archive of Formal Proofs. 2015

J. Aransay and J. Divasón. Formalisation of the Computation of the Echelon Form of a

Matrix in Isabelle/HOL. Formal Aspects of Computing. 2016
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Echelon and Hermite Normal Form Examples

Determinant

A =

−5x2 + 4x + 1 x −3x2

4x − 2 0 −x + 2
4x − 1 3x 4x3

 ∈M3×3(R[x ])

det(A) = −16x5 − 43x4 + 56x3 − 12x2 − 8x
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Echelon and Hermite Normal Form Examples

Inverse

A =

1 −2 4
1 −1 1
0 1 −2

 ∈M3×3(Z)

inv(A) =

1 0 2
2 −2 3
1 −1 1



B =

3 0 0
0 1 0
0 0 1

 ∈M3×3(Z)

@inv(B)
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Echelon and Hermite Normal Form Examples

Characteristic polynomial

A =

3 5 1
2 1 3
1 2 1

 ∈M3×3(R)

charpoly(A) = x3 − 5x2 − 10x + 7
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Echelon and Hermite Normal Form Hermite Normal Form

Hermite normal form

Definition (Hermite normal form)

A matrix H is said to be the Hermite normal form of a given matrix A with
elements in a Bézout ring iff:

1. H is in echelon form;

2. the first nonzero element of a nonzero row belongs to the complete
set of nonassociates;

3. Let h be the first nonzero element of a nonzero row; each element
above h belongs to the corresponding complete set of residues of h;

4. There exists an invertible matrix P such that A = PH;

The Hermite normal form is unique, up to the sets of nonassociates and
residues, which in our work are parameters of the Hermite operation.
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Echelon and Hermite Normal Form Hermite Normal Form

Hermite normal form

lemma Hermite-unique:
fixes K::’a::bezout-ring-divˆ ′n::mod-typeˆ ′n::mod-type
assumes A = P ∗∗ H and A = Q ∗∗ K
and invertible A
and invertible P and invertible Q
and Hermite associates residues H
and Hermite associates residues K
shows H = K

J. Divasón and J. Aransay. Hermite Normal Form. Archive of Formal Proofs. 2016
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Univalent Foundations Introduction

Univalent Foundations

Mathematicians’ lives are about to change.
Soon enough, they’re going to find themselves
doing mathematics at the computer, with the
aid of computer proof assistants. Soon, they
won’t consider a theorem proven until a com-
puter has verified it. Soon, they’ll be able
to collaborate freely, even with mathemati-
cians whose skills they don’t have confidence
in. And soon, they’ll understand the founda-
tions of mathematics very differently.

— Vladimir Voevodsky
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Univalent Foundations Introduction

I Active area of research presented as a new foundation of Mathematics

I Homotopy type theory is an attempt to formally redefine the whole
mathematical behaviour in a way that is both much closer to how
informal mathematics is actually done and to how mathematics
should be implemented to be computationally checkable.

It makes sense to implement the model in an interactive theorem prover
Approach: try to reuse as many existing Isabelle/HOL libraries as possible
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Univalent Foundations A piece of Voevodsky’s simplicial model

A piece of Voevodsky’s simplicial model
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Univalent Foundations A piece of Voevodsky’s simplicial model

Definition

Given a simplicial set X we define W(X ) to be the set of isomorphism classes
of well-ordered morphisms f : Y → X . Given a morphism t : X ′ → X we
define W(t) : W(X )→W(X ′) by W(t) = t∗ (the pullback functor). This
provides a functor W : sSetop → Set.

Definition

W := W ◦ y op : ∆op → Set

where y denotes the Yoneda embedding y : ∆→ sSet.

1. Quotient sets 3

2. Pullback 7

3. Functors and categories 3

4. sSet 7

5. Op category 7

6. Set category 3

7. ∆ category 7

8. Yoneda embedding 7
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Univalent Foundations A piece of Voevodsky’s simplicial model

Definition

Given a simplicial set X we define W(X ) to be the set of isomorphism classes
of well-ordered morphisms f : Y → X . Given a morphism t : X ′ → X we
define W(t) : W(X )→W(X ′) by W(t) = t∗ (the pullback functor). This
provides a functor W : osSetop → Set.

I We must show that W : osSetop → Set is a functor in Isabelle/HOL.

I Among other things, we have to prove that W(t) : W(X )→W(X ′)
is an arrow in a Set-category implemented in Isabelle/HOL.
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Univalent Foundations The problem

PROBLEM
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Univalent Foundations The problem

Set category in HOL

record ′c set-arrow =
set-dom :: ′c set
set-func :: ′c ⇒ ′c
set-cod :: ′c set

definition
set-arrow :: [ ′c set, ′c set-arrow]⇒ bool where
set-arrow U f ←→ set-dom f ⊆ U
∧ set-cod f ⊆ U
∧ set-func f ∈ (set-dom f) → (set-cod f)

∧ set-func f ∈ extensional (set-dom f)

definition
set-cat :: ′c set ⇒ ( ′c set, ′c set-arrow) cate-

gory where
set-cat U =
(|

ob = Pow U,
ar = {f. set-arrow U f},
dom = set-dom,
cod = set-cod,
id = set-id U,
comp = set-comp

|)

I The variable set U will fix the underlying type ′c of the category,
since its objects will be subsets of U.

I In fact, this corresponds to what is sometimes called Ens, “the
category of all sets and functions within a (variable) set U”, which is
a small category.
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Univalent Foundations The problem

Example

Let A = {1, 2, 3} be a set of natural numbers and B = {True,False} a
boolean set. Then, the following function would belong to the Set-category
(mathematically speaking) but not to the corresponding implementation in
Isabelle/HOL:

f : A // B
1 // True
2 // True
3 // False
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Univalent Foundations The problem

Definition (Pullback on morphisms)

Let X ′,X ,Y1,Y2 be simplicial sets, f1 : Y1 → X and f2 : Y2 → X well-
ordered morphisms, t : X ′ → X a morphism and g : Y1 → Y2 an isomor-
phism between the well-ordered morphisms f1 and f2. Then, the pullback
on morphisms is defined as follows:

X ′ ×(t,f1) Y1
(Π1,g) //

Π1

  

X ′ ×(t,f2) Y2

Π1

~~

Y1
g //

f1

��

Y2

f2

��
X ′

t
// X
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Univalent Foundations The solution

SOLUTION?

Use another logic: HOLZF (HOL + ZF)

Jose Divasón (UR) PhD Defense 20th June 2016



Univalent Foundations The solution

SOLUTION?

Use another logic: HOLZF (HOL + ZF)

Jose Divasón (UR) PhD Defense 20th June 2016



Univalent Foundations The solution

The definition of the Set-category in Isabelle/HOLZF is the following one:

definition
SET ′ :: (ZF, ZF) Category where
SET ′ ≡ (|

Category.Obj = {x . True} ,
Category.Mor = {f . isZFfun f} ,
Category.Dom = ZFfunDom ,
Category.Cod = ZFfunCod ,
Category.Id = λx. ZFfun x x (λx . x) ,
Category.Comp = ZFfunComp

|)

definition SET ≡ MakeCat SET ′

I Objects and arrows are of the same type

I Products are also of type ZF
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Univalent Foundations The solution

Let Y1,Y2 and X be simplicial sets together with ∂Y1 , sY1 , ∂Y2 , sY2 , ∂X and
sX as the corresponding face and degeneracy operators. Let t : Y1 → X and
f : Y2 → X be morphisms. Then the following construction is a simplicial
set:

Y1 ×(t,f ) Y2 = {(y1, y2). y1 ∈ Y1 ∧ y2 ∈ Y2 ∧ t(y1) = f (y2)}

∂Y1×(t,f )Y2 = (λ(y1, y2) ∈ Y1 ×(t,f ) Y2. (∂Y1(y1), ∂Y2(y2))

sY1×(t,f )Y2 = (λ(y1, y2) ∈ Y1 ×(t,f ) Y2. (sY1(y1), sY2(y2))

sublocale Y1-times-Y2-tf: simplicial-set
(λn. Sep (Y1 n |×| Y2 n) (λx. t n (Fst x) = f n (Snd x)))
(λi n x. Opair (dy1 i n (Fst x)) (dy2 i n (Snd x)))
(λi n x. Opair (sy1 i n (Fst x)) (sy2 i n (Snd x)))

I We have ported the development to Isabelle/HOLZF

I HOLZF seems to avoid the restriction
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Conclusions Related Work

State of the art (June 2016) & Related work

Thiemann and Yamada; computation of Jordan Normal Form in Isabelle

R. Thiemann, A. Yamada. Matrices, Jordan Normal Forms, and Spectral Radius Theory.

Archive of Formal Proofs. 2015

Dénès et al; implementation of Smith Normal Form in CoqEAL

M. Dénès, A. Mörtberg, and V. Siles. A refinement-based approach to computational

algebra in COQ. Interactive Theorem Proving. 2012

Gonthier; implementation of LUP decomposition in SSReflect

G. Gonthier. Point-Free, Set-Free Concrete Linear Algebra. Interactive Theorem Proving.

2011
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Conclusions Conclusions

Conclusions (1/2)

I Linear Algebra algorithms can be implemented in HMA (linked to
mathematical results)

I Framework for implementing

I Four well-known algorithms have been formalised (almost 40000 loc)

I Use of parametrised algorithms

I Side-products: generalisation of HMA, ring theory, serialisations, . . .
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Conclusions Conclusions

Conclusions (2/2)

I Algorithms are executable inside of Isabelle

I Better performance can be obtained thanks to code generation in
SML and Haskell

I The use of immutable arrays does not pose a drawback, even in
comparison to imperative programming

I The generated code is usable in practice

I HOLZF seems to be useful to formalise the simplicial model for
Univalent Foundations
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Conclusions Thanks
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